Treating collisions in the lab and centre of mass frames

In the gas or liquid phase, a typical molecule undergoes billions of collisions every second. Such collisions
may be grouped into three types:

1. Elastic — kinetic energy is conserved

2. Inelastic — kinetic energy is not conserved, and energy is converted between different
forms e.g. translational to rotational or vibrational, or vice versa.

3. Reactive— chemical bonds are made or broken (this is actually a special case of an
inelastic collision).

Collisions lie at the heart of chemistry. Reactive collisions are the processes in which chemical change
occurs, while inelastic collisions are often the means by which molecules gain enough energy to overcome
activation barriers so that subsequent collisions may lead to reaction. Because of their central role in
chemistry, it is important that you understand the basic physics describing collisions, and can carry out
simple calculations on the energetics and dynamics of these processes.

Why do we need a centre of mass frame?

One of the aspects of such calculations that seems to cause the most confusion is the concept of ‘lab’ and
‘centre of mass’ frames. The following example might help illustrate why two reference frames are
necessary.

Imagine you are carrying out an experiment in which you observe single reactive collisions and measure the
angles at which the product molecules scatter (this is not just a thought experiment — it is perfectly possible
to make these measurements using currently available experimental techniques). The direction in which
the products scatter results from the forces acting in the transition state region of the reaction, and the
product angular distribution is therefore a sensitive probe of the detailed chemical rearrangement
occurring during the reactive collisions. Another way of thinking about it is that the product scattering
distribution provides a ‘fingerprint’ for a reaction in the same way as a spectrum provides a fingerprint for a
molecule. Some reactions scatter products forwards relative to the relative velocity of the reactants, some
scatter products backwards, and some show a complicated mixture of the two.

Now think about how we would go about measuring the scattering distribution. One way of doing it is
shown in Figure a) below. The two reactants are prepared in molecular beams (these literally are beams of
molecules formed by expanding a gas through a small hole into a vacuum). The beams are allowed to cross
at right angles, and reactive collisions occur at the crossing point. A detector then measures the number of
product molecules scattered into each angle, thereby determining the angular distribution.
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The fact that the beams cross at right angles in this example is fairly arbitrary. We could have crossed them
at a different angle, in which case conservation of momentum and energy would mean that the scattering
distribution would look different. We could have carried out a different experiment entirely, in which case
the scattering distribution would look different again. However, no matter what experiment we choose to
do, we are looking at the same chemical process. We said above that the scattering distribution depends
only on the chemical rearrangement occurring during the collision, so there must be some way in which we
can compare the scattering distributions from different experiments and obtain chemically meaningful
information. It turns out that what we need to do is transform the results into the centre of mass (CM)
frame. This is simply a frame of reference in which the observer is travelling along with the centre of mass
of the system. The total momentum in this frame is zero, and the reactants appear to undergo a head on
collision at the position of their centre of mass (this is illustrated in Figure b) above). The CM frame is
independent of experimental geometry, allowing results from different types of experiments to be
compared, and also provides a much more intuitive picture of the collision dynamics. As an example,
‘forward’ and ‘backward’ scattering is always defined relative to the CM frame, whereas in the lab frame
these terms can be ambiguous to say the least.

An analogy that some people find helpful in thinking about the lab and CM frames comes from NMR
spectroscopy. The natural units for displaying any kind of spectrum are frequency units (or equivalently,
wavelength or energy units). However, in NMR spectroscopy the transition frequencies depend on the
magnetic field strength inside the spectrometer. No two spectrometers will have exactly the same magnet,
with the result that two spectra of the same molecule measured on different spectrometers would not
match. To get around this problem, NMR spectroscopists have defined ‘chemical shift” units of ppm, which
are independent of the spectrometer. The CM frame in the treatment of collisions serves the same
purpose as the ‘chemical shift” units in NMR, allowing the results of different experiments to be compared.

Calculations on collisions

For simplicity, we will only consider calculations involving elastic collisions here. It is straightforward to
extend the following to inelastic or reactive collisions — all you have to do is add or subtract the appropriate
energy change from the energy of the collision products. Note that in the general case all of the velocities
are vector quantities, though often you will only be concerned with motion in one dimension (e.g. a head
on collision or collision involving a stationary particle in the lab frame), in which case they may be treated
as scalars.

Usually, we know the velocities of the two particles before the collision, vi and v.. These are our ‘lab
frame’ velocities. The kinetic energies of the two particles are Ki = % mivi? and K, = % m,v,?, and the total
kinetic energy is

K=Ky + Ky =% mvi® + % mavy? (lab frame)

At some point we will need to determine the velocities in the CM frame — call them u; and u; to
differentiate them from the lab frame velocities. This is a simple calculation to do. Remember that the
centre of mass frame is just the frame in which we are travelling along with the centre of mass. This means
that all we have to do to go from lab frame to CM frame velocities is subtract the velocity of the centre of
mass.

Ui =Vi—Vem
Uz =V —Vem



We can determine vem by recalling that in the CM frame, the total momentum is zero. The total
momentum may be written either as the momentum of the centre of mass, or as the sum of the momenta
of the two individual particles.

mivi + mava
Mvem = mvs + mav, = Vem = M

Above, we have defined a momentum associated with the motion of the centre of mass. We can also
define the kinetic energy associated with this motion.

Kem = % Mvem®

Note that because the total momentum of the system has to be conserved, the velocity, momentum, and
kinetic energy of the centre of mass are conserved throughout the collision (this is true for any type of
collision, including inelastic and reactive ones). Energy ‘tied up’ in the motion of the centre of mass is
therefore not available for the collision. For a reactive collision, this energy does not help overcome any
activation barrier that might be present.

We have now defined the total kinetic energy and the kinetic energy associated with the centre of mass.
The remaining kinetic energy is the energy associated with relative motion of the two particles. This energy
is available for the collision, and consequently, it is often called the ‘collision energy’, or sometimes the ‘CM
frame kinetic energy’.

Kiet =% MVreI2

In the above, p is the reduced mass of the two particles, p = mim2/M, and vie is their relative velocity.
Vrel = V2- V1

We have now determined all of the relevant parameters involving the reactants. The product velocities
may be determined by requiring that momentum and kinetic energy (or total energy in the case of an
inelastic collision) are conserved during the collision. Usually it is most straightforward to do this
calculation in the CM frame, though it should work just as well in the lab frame.

miu1 + muu; = m1u1’ + mzllz'
% f7’71(l12 +% I’)’Izllz2 =% m1u1' 24 % mzllz’ 2

We therefore have two equations in the two unknowns ui’ and u,’ (the final CM frame velocities)
Remember that in the CM frame the total momentum is zero both before and after the collision — this will
simplify solving these equations considerably, since the first equation becomes simply

m1u1' + mzllz' =0.

Once we have determined the CM frame velocities after the collision, we can find the equivalent lab frame
velocities simply by adding on the velocity of the CM (which, remember, stays constant throughout the
collision).

V1' = U1' + Vem
V2 = U + vem



