
The Equipartition Theorem 
 
The equipartition theorem states that energy is shared equally amongst all energetically accessible 
degrees of freedom of a system.  This is not a particularly surprising result, and can be thought of as 
another way of saying that a system will generally try to maximise its entropy (i.e. how ‘spread out’ the 
energy is in the system) by distributing the available energy evenly amongst all the accessible modes 
of motion. 
 
To give a rather contrived example, consider a container in which we have placed a number of ping-pong 
balls.  Initially the balls are stationary.  Imagine we now throw some energy randomly into our box, 
which will be shared out amongst the ping-pong balls in some way such that they begin to move about.  
While you might not realise it, intuitively you know what this motion will look like.  For example, you 
would be very surprised if the particle motion looked like this: 
 

      
 
You would probably predict something more like this: 
 

      
 
i.e. completely random motion of the ping-pong balls.  This is exactly the same result as predicted by 
the equipartition theorem – the energy is shared out evenly amongst the x, y, and z translational 
degrees of freedom. 
 
The equipartition theorem can go further than simply predicting that the available energy will be 
shared evenly amongst the accessible modes of motion, and can make quantitative predictions about 
how much energy will appear in each degree of freedom.  Specifically, it states that each quadratic 
degree of freedom will, on average, possess an energy ½kT.  A ‘quadratic degree of freedom’ is one for 
which the energy depends on the square of some property.  Consider the kinetic and potential energies 
associated with translational, rotational and vibrational energy. 
 
 Translational degrees of freedom  K = ½mv2 
 Rotational degrees of freedom  K = ½Iω2 
 Vibrational degrees of freedom K = ½mv2 V = ½kx2 
 
These three types of degrees of freedom all have a quadratic dependence on the velocity (or angular 
velocity in the case of rotation) and therefore all follow the equipartition theorem.   Note that when 



considering vibration in a harmonic oscillator potential (V, above), we consider both the kinetic energy 
and the potential energy i.e the potential energy counts as an additional degree of freedom.  Another 
point about vibrations is that vibrational motion in molecules is highly quantised, and at room 
temperature most molecules are in their ground vibrational state and higher levels are not thermally 
accessible.  As a consequence, equipartition contributions from vibrational degrees of freedom need 
only usually be considered at very high temperatures.  Conversely, at room temperature many 
rotational and translational states are occupied, and they can be treated classically (i.e. as if their 
energy levels were not quantised) to a very good approximation. 
 
A simple derivation of the equipartition result for translational motion 
 
We can use the Maxwell-Boltzmann distribution of molecular speeds to determine the average kinetic 
energy of a particle in a gas, and show that it agrees with the equipartition result. 
 
The Maxwell-Boltzmann distribution of molecular speeds is: 
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The average kinetic energy of a particle in the gas is then 
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Substituting for f(v) and taking all constant terms outside the integral gives 
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We can evaluate the integral by using the general result that 
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where n!! indicates a double factorial, n(n-2)(n-4)...  etc.  Identifying x = v and a = m/2kT in our integral 
above gives 
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Substituting back into our expression for < K > gives 
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The average translational kinetic energy of a particle in a gas is therefore 

3
2 kT, or ½ kT per 

translational degree of freedom, in agreement with the equipartition theorem.  
 



A more general derivation of the equipartition theorem 
 
A general derivation of the equipartition theorem requires statistical mechanics, which is covered in 
the second year of the M.Chem. course.  I will try and provide enough explanation here so that those 
of you in the first year can also follow what’s going on. 
 
The partition function in statistical mechanics tells us the number of quantum states of a system that 
are thermally accessible at a given temperature.  It is defined as: 
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where Ei are the energies of the quantum states i. 
 
Once we know the partition function, we can calculate many of the macroscopic properties of our 
system using standard equations from statistical mechanics.  Of particular relevance here, in deriving 
the equipartition theorem we will use the partition function to calculate the internal energy U 
associated with a single degree of freedom of the system.  Before we do this though, we need to 
consider the difference between a quantum and a classical system.  
 
If we are treating the particle motions classically (which we should do if we’re expecting to derive the 
classical equipartition theorem), then it doesn’t make much sense to express the partition function as a 
sum of discrete terms as we have above.  Classically, the position and momentum of a particle can vary 
continuously, and the ‘energy levels’ are also continuous.  As a result, the classical partition function 
takes the form of an integral rather than a sum.      
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where the energy E can be a function of the particle positions xi and momenta pi.   
 
If we assume that we can write the energy as a sum of contributions from each degree of freedom, 
then the exponential functional dependence on the energy means that we can separate the integral 
into the product of integrals over each degree of freedom.  i.e. 
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and the integral may be written 
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The consequence of this is that we have separated the partition function into the product of partition 
functions for each degree of freedom.   In general, we may write the partition function for a single 
degree of freedom in which the energy depends quadratically on the coordinate x (i.e. E(x) = cx2 with c 
a constant) as 
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Once we know the partition function, we can calculate the internal energy of the system according to 
the standard result from statistical mechanics: 
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Substituting in our partition function, the internal energy associated with one degree of freedom is 
therefore 
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The energy associated with each quadratic degree of freedom is therefore ½kT, and we have proved 
the equipartition theorem. 
 


