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1.  Introduction 
 
Chemical reaction kinetics deals with the rates of chemical processes.   Any chemical process may 
be broken down into a sequence of one or more single-step processes known either as elementary 
processes, elementary reactions, or elementary steps.  Elementary reactions usually involve either 
a single reactive collision between two molecules, which we refer to as a a bimolecular step, or 
dissociation/isomerisation of a single reactant molecule, which we refer to as a unimolecular step.  
Very rarely, under conditions of extremely high pressure, a termolecular step may occur, which 
involves simultaneous collision of three reactant molecules.  An important point to recognise is that 
many reactions that are written as a single reaction equation in actual fact consist of a series of 
elementary steps.  This will become extremely important as we learn more about the theory of 
chemical reaction rates. 
 
As a general rule, elementary processes involve a transition between two atomic or molecular 
states separated by a potential barrier.  The potential barrier constitutes the activation energy of 
the process, and determines the rate at which it occurs.  When the barrier is low, the thermal 
energy of the reactants will generally be high enough to surmount the barrier and move over to 
products, and the reaction will be fast.  However, when the barrier is high, only a few reactants will 
have sufficient energy, and the reaction will be much slower.  The presence of a potential barrier to 
reaction is also the source of the temperature dependence of reaction rates, which we will cover in 
more detail in Section 19. 
 
The huge variety of chemical species, types of reaction, and the accompanying potential energy 
surfaces involved means that the timescale over which chemical reactions occur covers many 
orders of magnitude, from very slow reactions, such as iron rusting, to extremely fast reactions, 
such as the electron transfer processes involved in many biological systems or the combustion 
reactions occurring in flames. 
  
A study into the kinetics of a chemical reaction is usually carried out with one or both of two main 
goals in mind: 
 
 1. Analysis of the sequence of elementary steps giving rise to the overall reaction.  i.e. 
  the reaction mechanism. 
 
 2. Determination of the absolute rate of the reaction and/or its individual elementary 
  steps. 
 
The aim of this course is to show you how these two goals may be achieved. 
 
 
2.  Rate of reaction 
 
When we talk about the rate of a chemical reaction, what we mean is the rate at which reactants 
are used up, or equivalently the rate at which products are formed.  The rate therefore has units of 
concentration per unit time, mol dm-3 s-1 (for gas phase reactions, alternative units of concentration 
are often used, usually units of pressure – Torr, mbar or Pa).  To measure a reaction rate, we 
simply need to monitor the concentration of one of the reactants or products as a function of time.  
There is one slight complication to our definition of the reaction rate so far, which is to do with the 
stochiometry of the reaction.  The stoichiometry simply refers to the number of moles of each 
reactant and product appearing in the reaction equation.  For example, the reaction equation for 
the well-known Haber process, used industrially to produce ammonia, is: 
 
     N2 + 3H2  ¾  2NH3 
 
N2 has a stochiometric coefficient of 1, H2 has a coefficient of 3, and NH3 has a coefficient of 2.  
We could determine the rate of this reaction in any one of three ways, by monitoring the changing 
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concentration of N2, H2, or NH3.  Say we monitor N2, and obtain a rate of -d[N2]
dt  = x mol dm-3 s-1.  

Since for every mole of N2 that reacts, we lose three moles of H2, if we had monitored H2 instead of 

N2 we would have obtained a rate -d[H2]
dt  = 3x mol dm-3 s-1.  Similarly, monitoring the concentration 

of NH3 would yield a rate of 2x mol dm-3 s-1.  Clearly, the same reaction cannot have three different 
rates, so we appear to have a problem.  The solution is actually very simple: the reaction rate is 
defined as the rate of change of the concentration of a reactant or product divided by its 
stochiometric coefficient.  For the above reaction, the rate (usually given the symbol ν)  is therefore 
 

     ν  =  -
d[N2]

dt   =  -
1
3 

d[H2]
dt   =  

1
2 

d[NH3]
dt     

 
Note that a negative sign appears when we define the rate using the concentration of one of the 
reactants.  This is because the rate of change of a reactant is negative (since it is being used up in 
the reaction), but the reaction rate needs to be a positive quantity. 
 
 
3.  Rate laws 
 
The rate law is an expression relating the rate of a reaction to the concentrations of the chemical 
species present, which may include reactants, products, and catalysts.  Many reactions follow a 
simple rate law, which takes the form 
 
      ν = k [A]a[B]b[C]c...    (3.1) 
 
i.e. the rate is proportional to the concentrations of the reactants each raised to some power.  The 
constant of proportionality, k, is called the rate constant. The power a particular concentration is 
raised to is the order of the reaction with respect to that reactant.  Note that the orders do not have 
to be integers.  The sum of the powers is called the overall order.  Even reactions that involve 
multiple elementary steps often obey rate laws of this kind, though in these cases the orders will 
not necessarily reflect the stoichiometry of the reaction equation.  For example, 
 
    H2 + I2 → 2HI    ν = k [H2][I2].   (3.2) 
  
   3ClO−  → ClO3

− + 2Cl−  ν = k [ClO−]2   (3.3) 
 
Other reactions follow complex rate laws.  These often have a much more complicated 
dependence on the chemical species present, and may also contain more than one rate constant.  
Complex rate laws always imply a multi-step reaction mechanism. An example of a reaction with a 
complex rate law is  

   H2 + Br2 →  2HBr   ν = 
[H2][Br2]1/2

1 + k'[HBr]/[Br2]   (3.3) 

 
In the above example, the reaction has order 1 with respect to [H2], but it is impossible to define 
orders with respect to Br2 and HBr since there is no direct proportionality between their 
concentrations and the reaction rate.  Consequently, it is also impossible to define an overall order 
for this reaction.   
 To give you some idea of the complexity that may underlie an overall reaction equation, a 
slightly simplified version of the sequence of elementary steps involved in the above reaction is 
shown below.  We will return to this reaction later when we look at chain reactions in Section 17. 
 
    Br2     → Br + Br  
    Br + H2 →  H + HBr 
    H + Br2 → Br + HBr 
    Br + Br → Br2       (3.4) 
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As well as having rate laws for overall reactions, we can of course also write down individual rate 
laws for elementary steps. Elementary processes always follow simple rate laws, in which the 
order with respect to each reactant reflects the molecularity of the process (how many molecules 
are involved).  For example, 
 
Unimolecular decomposition    A → B  ν = k [A]     
 
Bimolecular reaction   A + B → P ν = k [A][B] 
     A + A → P   ν = k [A][A] = k [A]2 
 
Multi-step processes may follow simple or complex rate laws, and as the above examples have 
hopefully illustrated, the rate law generally does not follow from the overall reaction equation.  This 
makes perfect sense, since the overall reaction equation for a multi-step process is simply the net 
result of all of the elementary reactions in the mechanism.  The ‘reaction’ given in the overall 
reaction equation never actually takes place!  However, even though the rate law for a multi-step 
reaction cannot immediately be written down from the reaction equation as it can in the case of an 
elementary reaction, the rate law is a direct result of the sequence of elementary steps that 
constitute the reaction mechanism.  As such, it provides our best tool for determining an unknown 
mechanism.  As we will find out later in the course, once we know the sequence of elementary 
steps that constitute the reaction mechanism, we can quite quickly deduce the rate law.  
Conversely, if we do not know the reaction mechanism, we can carry out experiments to determine 
the orders with respect to each reactant (see Sections 7 and 8) and then try out various ‘trial’ 
reaction mechanisms to see which one fits best with the experimental data.  At this point it should 
be emphasised again that for multi-step reactions, the rate law, rate constant, and order are 
determined by experiment, and the orders are not generally the same as the stoichiometric 
coefficients in the reaction equation.  
 
A final important point about rate laws is that overall rate laws for a reaction may contain reactant, 
product and catalyst concentrations, but must not contain concentrations of reactive intermediates 
(these will of course appear in rate laws for individual elementary steps).  
 
 
4.  The units of the rate constant 
 
A point which often seems to cause endless confusion is the fact that the units of the rate constant 
depend on the form of the rate law in which it appears i.e. a rate constant appearing in a first order 
rate law will have different units from a rate constant appearing in a second order or third order rate 
law.  This follows immediately from the fact that the reaction rate always has the same units of 
concentration per unit time, which must match the overall units of a rate law in which 
concentrations raised to varying powers may appear.  The good news is that it is very 
straightforward to determine the units of a rate constant in any given rate law.  Below are a few 
examples. 
 
(i) Consider the rate law ν = k[H2][I2].  If we substitute units into the equation, we obtain 
 
    (mol dm-3 s-1) = [k] (mol dm-3) (mol dm-3)  
 
 where the notation [k] means ‘the units of k’.  We can rearrange this expression to 
 find the units  of the rate constant, k. 
 

    [k]  =  
(mol dm-3 s-1)

(mol dm-3) (mol dm-3)  =  mol-1 dm3 s-1  

 
 
(ii) We can apply the same treatment to a first order rate law, for example  
 ν = k [CH3N2CH3]. 
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    (mol dm-3 s-1)  =  [k] (mol dm-3) 
  

    [k]  =  
(mol dm-3 s-1)

(mol dm-3)   =  s-1  

 
(iii)    As a final example, consider the rate law ν = k [CH3CHO]3/2. 
    
    (mol dm-3 s-1)  =  [k] (mol dm-3)3/2 
 

    [k]  =  
(mol dm-3 s-1)
(mol dm-3)3/2   =  mol-1/2 dm3/2 s-1  

 
An important point to note is that it is meaningless to try and compare two rate constants unless 
they have the same units. 
 
 
5.  Integrated rate laws 
 
A rate law is a differential equation that describes the rate of change of a reactant (or product) 
concentration with time.  If we integrate the rate law then we obtain an expression for the 
concentration as a function of time, which is generally the type of data obtained in an experiment. 
In many simple cases, the rate law may be integrated analytically.  Otherwise, numerical 
(computer-based) techniques may be used.  Four of the simplest rate laws are given below in both 
their differential and integrated form. 
 
 Reaction Order  Differential form Integrated form 
 

 A → P  zeroth   
d[A]
dt  = -k   [A] = [A]0 - kt 

 

 A → P  first   
d[A]
dt  = -k [A]  ln[A] = ln[A]0 - kt 

 

 A + A → P second  
1
2

d[A]
dt  = -k [A]2  

1
[A] = 

1
[A]0 + 2kt  

 

 A + B → P second  
d[A]
dt  = -k [A][B]  kt  =  

1
[B]0-[A]0 ln

[B]0[A]
[A]0[B]  

 
In the above [A]0 and [B]0 represent the initial concentrations of A and B i.e. their concentrations at 
the start of the reaction. 
 
6.  Half lives 
 
The half life, t1/2, of a substance is defined as the time it takes for the concentration of the 
substance to fall to half of its initial value.   Note that it only makes sense to define a half life for a 
substance not present in excess at the start of the reaction.  We can obtain equations for the half 
lives for reactions of various orders by substituting the values t = t1/2 and [A] = ½ [A]0 into the 
integrated rate laws from Section 5.  We obtain 
 

   Zeroth order reaction   t1/2  =  
[A]0
2k     (6.1) 

  

   First order reaction   t1/2  =  
ln2
k     (6.2) 
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   Second order reaction  t1/2  =  
1

k[A]0    (6.3) 

 
 
7.  Determining the rate law from experimental data 
 
A kinetics experiment consists of measuring the concentrations of one or more reactants or 
products at a number of different times during the reaction.  We will review some of the 
experimental techniques used to make these measurements in Section 8.  In the present section, 
we will look at the methods that allow us to use the experimental data to determine the reaction 
orders with respect to each reactant, and therefore the rate law. 
 
 (i)  Isolation method 
 
The isolation method is a technique for simplifying the rate law in order to determine its 
dependence on the concentration of a single reactant.  Once the rate law has been simplified, the 
differential or integral methods discussed in the following subsections may be used to determine 
the reaction orders. 
 
The dependence of the reaction rate on the chosen reactant concentration is isolated by having all 
other reactants present in a large excess, so that their concentration remains essentially constant 
throughout the course of the reaction.  As an example, consider a reaction A + B → P, in which B 
is present at a concentration 1000 times greater than A.  When all of species A has been used up, 
the concentration of B will only have changed by 1/1000, or 0.1%, and so 99.9% of the original B 
will still be present.  It is therefore a good approximation to treat its concentration as constant 
throughout the reaction. 
 
This greatly simplifies the rate law since the (constant) concentrations of all reactants present in 
large excess may be combined with the rate constant to yield a single effective rate constant.   For 
example, the rate law for the reaction considered above will become: 
  
   ν = k [A]a[B]b  ≈  k [A]a[B]0b = keff[A]a with  keff = k[B]0b  (7.1) 
 
When the rate law contains contributions from a number of reactants, a series of experiments may 
be carried out in which each reactant is isolated in turn.  
 
(ii)  Differential methods 
        
When we have a rate law that depends only on the concentration of one species, either because 
there is only a single species reacting, or because we have used the isolation method to 
manipulate the rate law, then the rate law may be written 
 
    ν  = k[A]a       (7.2) 
 
    log ν = log k + a log[A]     (7.3) 
 
A plot of logν against log[A] will then be a straight line with a slope equal to the reaction order, a, 
and an intercept equal to log k.  There are two ways in which to obtain data to plot in this way. 
 
1. We can measure the concentration of the reactant [A] as a function of time and use 
 this data to calculate the rate, ν = -d[A]/dt, as a function of [A].  A plot of logν vs log[A] then 
 yields the reaction order with respect to A. 
 
2. We can make a series of measurements of the initial rate ν0 of the reaction with different 
 initial concentrations [A]0.  These may then be plotted as above to  determine the order, a.  
 This is a commonly used technique known as the initial rates method. 
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(iii)  Integral methods 
 
If we have measured concentrations as a function of time, we may compare their time dependence 
with the appropriate integrated rate laws.  Again, this is most straightforward if we have simplified 
the rate law so that it depends on only one reactant concentration.  The differential rate law given 
in Equation (7.2) will give rise to different integrated rate laws depending on the value of a, some of 
which were given in Section 5.  The most commonly encountered ones are: 
 
Zeroth order integrated rate law:   [A] = [A]0 – kt  
        A plot of [A] vs t will be linear, with a slope of -k.   
 
First order integrated rate law:   ln[A] = ln[A]0 – kt  
     A plot of ln[A] vs t will be linear with a slope of -k. 
 

Second order integrated rate law:   
1

[A] = 
1

[A]0 + 2kt  

     A plot of 
1

[A] vs t will be linear with a slope of 2k. 

 
If none of these plots result in a straight line, then more complicated integrated rate laws must be 
tried. 
 
 
(iv)  Half lives 
 
Another way of determining the reaction order is to investigate the behaviour of the half life as the 
reaction proceeds.   Specifically, we can measure a series of successive half lives.  t = 0 is used as 
the start time from which to measure the first half life, t1/2

(1).  Then t1/2
(1) is used as the start time 

from which to measure the second half life, t1/2
(2), and so on. 

            

Zeroth order   t1/2  =  
[A]0
2k    

Since at t1/2
(1), the new starting concentration is ½[A]0, successive half lives will decrease by a 

factor of two for a zeroth order reaction.   
  

First order  t1/2  =  
ln2
k      

There is no dependence of the half life on concentration, so t1/2 is constant for a first order reaction. 
 

Second order  t1/2  =  
1

k[A]0     

The inverse dependence on concentration means that successive half lives will double for a 
second order reaction. 
 
 
8.  Experimental techniques 
 
Experimental techniques have been developed to monitor reactions over timescales varying from 
hours or days all the way down to a few femtoseconds (1 fs = 10-15 s).  While it is relatively simple 
to monitor the kinetics of a slow reaction (occurring over minutes to hours or longer), highly 
specialised techniques are required in order to study fast reactions, some of which will be 
considered here.   
 
Whatever the details of the experimental arrangement, any kinetics experiment essentially consists 
of mixing the reactants and initiating reaction on a timescale that is negligible relative to that of the 
reaction, and then monitoring the concentration(s) of one or more reactants and/or products as a 
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function of time.  Because rate constants vary with temperature (see Section 19), it is also 
important to determine and control accurately the temperature at which the reaction occurs. 
 
Most of the techniques we will look at are batch techniques, in which reaction is initiated at a single 
chosen time and concentrations are then followed as a function of time after initiation.  We will also 
consider one or two examples of continuous techniques, in which reaction is continuously initiated 
and the time dependence of the reaction mixture composition is inferred from, for example, the 
concentrations in different regions of the reaction vessel.  The continuous flow method outlined in 
the next section is an example of such a technique.   
 
 
(i)  Techniques for mixing the reactants and initiating reaction 
 
For slow reactions, occurring over minutes to hours, reaction is usually initiated simply by mixing 
the reactants together by hand or with a magnetic stirrer or other mechanical device.  For fast 
reactions, a wide range of techniques have been developed. 
 
Flow techniques 
 
Flow techniques are typically used to study reactions occurring on timescales of seconds to 
milliseconds.  In the simplest flow method, shown schematically on the left below, reactants are 
mixed at one end of a flow tube, and the composition of the reaction mixture is monitored at one or 
more positions further along the tube.  If the flow velocity along the tube is known, then 
measurements at different positions provide information on concentrations at different times after 
initiation of reaction.  In a variation on this method, shown on the right below, the detector may be 
in a fixed position, but a moveable injector may be used to inject one of the reactants into the flow 
tube at different positions relative to the detector in order to study the time dependence of the 
reaction mixture composition.  Reactions of atomic or radical species may be studied using the 
discharge flow method, in which the reactive species is generated by a microwave discharge 
immediately prior to injection into the flow tube. 
 

       
 
Continuous flow methods have the disadvantages that relatively large quantities of reactants are 
needed, and very high flow velocities are required in order to study fast reactions.  These problems 
may be avoided by using a stopped flow technique.  In this method, a fixed volume of reactants are 
rapidly flowed into a reaction chamber and mixed by the action of a syringe fitted with an end stop 

(see figure below).  The composition of the reaction 
mixture is then monitored spectroscopically as a function 
of time after mixing at a fixed position in the reaction 
chamber.   Experimental systems may be designed to 
allow measurements to be made on very small sample 
volumes, making the stopped flow method popular for the 
study of biochemical kinetics e.g. enzyme action (see 
Section 15).   

 
All flow techniques share the common problem that contributions from heterogeneous reactions at 
the walls of the flow tube can complicate the experiments.  These can be minimised by coating the 
inner surface of the flow tube with an unreactive substance such as teflon or halocarbon wax, and 
the relative contributions from the process under study and reactions involving the walls may be 
quantified by varying the diameter of the flow tube (and therefore the ratio of volume to surface 
area). 
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Flash photolysis and laser pump probe techniques 
 
In flash photolysis, reaction is initiated by a pulse of light (the ‘flash’) that dissociates a suitable 
precursor molecule in the reaction mixture to produce a reactive species, thereby initiating 
reaction.  The concentration of the reactive species is then monitored as a function of time, usually 
spectroscopically using absorption spectroscopy or fluorescence techniques (see later).  The 
shortest timescale over which reactions may be studied using this technique is determined by the 
duration of the ‘flash’.  Originally, the flash was provided by a discharge lamp, with durations in the 
region of tens of microseconds to several milliseconds.  However, in most modern experiments the 
flash is provided by a laser pulse, typically with a duration of a few nanoseconds (1 ns = 10-9 s).  
For studying extremely fast reactions, such as some of the electron transfer processes involved in 
photosynthesis, laser pulses as short as a few tens of femtoseconds (1 fs = 10-15 s) may be used.    
 
Flash photolysis has the advantage that because reactants are produced from well-mixed 
precursors, there is no mixing time to reduce the time resolution of the technique.  Also, because 
the reactants are generated and monitored in the centre of the reaction cell, there are no wall 
reactions to worry about as there are in flow methods. 
 
Pulse radiolysis is a variation on flash photolysis in which a short pulse of high energy electrons 
(10-9 to 10-6 s in duration) is passed through the sample in order to initiate reaction. 
 
For very fast processes, the ‘pump-probe’ technique is often used, in which pulsed lasers are 
employed both to initiate reaction (the ‘pump’) and to detect the products via a pulsed 
spectroscopic technique (the ‘probe’).  The time separation between the two pulses can be varied 
either electronically or with an optical delay line down to a resolution of around 10 femtoseconds 
(10-14 s) 
 
 
Relaxation methods  
 
If we allow a chemical system to come to equilibrium and then perturb the equilibrium in some way, 
the rate of relaxation to a new equilibrium position provides information about the forward and 
reverse rate constants for the reaction.  Since a system at chemical equilibrium is already well-
mixed, relaxation methods overcome the mixing problems associated with many flow methods.  
 
As an example, we will investigate the effect of a sudden increase in temperature on a system at 
equilibrium, an experiment known as a ‘temperature jump’.  Consider a simple equilibrium 
 

      A 
k1r

 ¾
k1f

 B 

 
where k1f and k1r are the rate constants for the forward and reverse reactions at the initial 
temperature T1.  The rate of change of A is 
 

     
d[A]
dt   =  -k1f [A] + k1 r [B]  

 
At equilibrium, the concentration of A is constant, and so 
 
     k1f[A]eq,1  =  k1r[B]eq,1 
 
We now increase the temperature suddenly by a few degrees.  This is often done by discharging a 
high voltage capacitor through the solution (~10-7 s), or by employing a UV or IR laser pulse or 
microwave discharge.  After the temperature jump, the concentrations of A and B are initially at the 
values [A]eq,1 and [B]eq,1, but the system is not at the equilibrium composition for the higher 
temperature.  The system relaxes back to the new equilibrium concentrations [A]eq,2 and [B]eq,2 at a 
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rate determined by the new higher-temperature rate constants k2f and k2r.   The new concentrations 
are given by 
     k2f[A]eq,2  =  k2r[B]eq,2 
 
If we define x = [A] - [A]eq,2 as the deviation of the concentration from its new (higher temperature) 
equilibrium value (note that the deviation of [B] from its equilibrium value must therefore be –x), 
then during the relaxation the concentrations change as follows 
 

    
d[A]
dt   =  -k2f[A] + k2r[B]  

             =  -k2f([A]eq,2+ x) + k2r([B]eq,2 - x)   
           
              =  -(k2f + k2r)x   (since k2f[A]eq,2 = k2r[B]eq,2) 
 
Since the rate of change of [A] is the same as the rate of change of x, we can integrate the rate law 
to give 

    x = x0 exp(-t/τ)  with   1
τ = k2f + k2r  

 
We see that the rate at which the concentrations relax to their new equilibrium values is 
determined by the sum of the two new rate constants.  The new equilibrium constant is given by 
the ratio of the two rate constants, K = k2f/k2r, so together a measurement of the rate of relaxation 
and the equilibrium constant allows the individual reaction rate constants for the forward and 
reverse reaction to be determined. 
 
The details of the kinetic equations change for more complicated reactions, but the basic principle 
of the technique remains the same.  
 
 
Shock tubes 
 
The shock tube method provides a way of producing highly reactive atomic or radical species 
through rapid dissociation of a molecular precursor, without the use of a discharge or laser pulse.    
The method is based on the fact that a very rapid increase in pressure (the shock) causes rapid 
heating of a gas mixture to a temperature of several thousand Kelvin.  Since most dissociation 
reactions are endothermic, at high temperatures their equilibria are shifted towards products.   A 
rapid increase in temperature therefore leads to rapid production of reactive species (the 
dissociation products) initiating the reaction of interest.  A shock tube (shown schematically below) 

essentially consists of two chambers separated by a 
diaphragm.  One chamber contains the appropriate 
mixture of reactants and precursor, the second an inert 
gas at high pressure.  To initiate reaction, the diaphragm 
is punctured and a shock wave propagates through the 
reaction mixture.  The temperature rise can be controlled 
by varying the pressure and composition of the inert gas. 
 The composition of the reaction mixture after initiation is 
monitored in real time, usually spectroscopically. 

 
The shock tube approach is often used to study combustion reactions.  Suitable precursors for 
such studies, together with the radical species obtained on dissociation using argon as the shock 
gas include:  
   HCN →  H + CN  CH4  →  CH3 + H 
   SO2 →  SO + O  N2O  →  N2 + O 
   CH3  →  CH2 + H  C2H2  →  C2H _ H 
   H2S  →  HS + H  CF3Cl  →  CF3 + Cl 
   NO  →  N + O   C2H4  →  C2H3 + H 
   NH3  →  NH2 + H  C2H4  →  C2H2 + H2 
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The method does have some major drawbacks, not least of which is the fact that the rapid heating 
is not selective for a particular molecules, and is likely to lead to at least partial dissociation of all of 
the species in the ‘reactants’ chamber.  This leads to a complicated mixture of reactive species and 
often a large number of reactions occurring in addition to the reaction under study.   Modelling the 
kinetics of such a system is often challenging, to say the least.  Also, because each experiment is 
essentially a ‘one off’, no signal averaging is possible, and signal to noise levels are often low.  
Compare this with laser pump-probe methods, in which hundreds or even thousands of traces may 
be averaged to obtain good signal to noise. 
 
Lifetime methods 
 
In quantum mechanics, you learnt about the Heisenberg uncertainty principle, which relating the 
uncertainty in position and momentum, ΔxΔp ≥ h/4π. A similar uncertainty principle relates energy 
and time. 
 
   ΔEΔt ≥ h/4π   or, since E = hν,  ΔνΔt ≥ 1/4π  
 
The result of this relationship is that an atomic or molecular 
state has an uncertainty ΔE in its energy that is related to its 
lifetime Δt.   The lifetime of most grounds states is effectively 
infinite, so that the uncertainty in their energy is negligible.  
However, excited states are short-lived, and their energy is 
therefore ‘fuzzy’.  Since photons corresponding to any 
energies within this uncertainty ΔE may be absorbed, this 
leads to spectral lines having a finite width known as the 
natural linewidth.  
 
Kinetic processes involving excited states reduce their lifetime and cause further broadening.  
Many such processes have first order kinetics, for and in these cases the rate constant is simply 
equal to the reciprocal of the lifetime, k = 1/Δt.  As a consequence, first order rate constants may 
be determined from measurements of spectral linewidths, provided that other sources of line 
broadening are absent.  Lifetime techniques cover a broad range of timescales, from around 10-15s 
in photoelectron spectroscopy to around 1 s in NMR. 
 
 
(ii) Techniques for monitoring concentrations as a function of time 
 
For slow reactions, the composition of the reaction mixture may be analysed while the reaction is in 
progress either by withdrawing a small sample or by monitoring the bulk.  This is known as a real 
time analysis.  Another option is to use the quenching method, in which reaction is stopped a 
certain time after initiation so that the composition may be analysed at leisure.  Quenching may be 
achieved in a number of ways.  For example: 
  

• sudden cooling 
• adding a large amount of solvent 
• rapid neutralisation of an acid reagent 
• removal of a catalyst 
• addition of a quencher 

 
The key requirement is that the reaction must be slow enough (or the quenching method fast 
enough) for little reaction to occur during the quenching process itself. 
 
Often, the real time and quenching techniques are combined by withdrawing and quenching small 
samples of the reaction mixture at a series of times during the reaction. 
 
The composition of the reaction mixture may be followed in any one of a variety of different ways 
by tracking any chemical or physical change that occurs as the reaction proceeds.  e.g. 
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• For reactions in which at least one reactant or product is a gas, the reaction’s progress may 

be followed by monitoring the pressure, or possibly the volume. 
• For reactions involving ions, conductivity or pH measurements may often be employed. 
• If the reaction is slow enough, the reaction mixture may be titrated. 
• If one of the components is coloured then colourimetry may be appropriate. 
• Absorption or emission spectroscopy are common (more on these later) 
• For reactions involving chiral compounds, polarimetry (measurement of optical activity) may 

be useful. 
• Other techniques include mass spectrometry, gas chromatography, NMR/ESR, and many 

more. 
 
Fast reactions require a fast measurement technique, and as a consequence are usually 
monitored spectroscopically.  A few commonly used techniques are outlined below. 
 
Absorption spectroscopy – Beer Lambert Law 
 
Also known as spectrophotometry, absorption spectroscopy is widely used to track reactions in 
which the reactants and products have different absorption spectra.   A monochromatic light 
source, often a laser beam, is passed through the reaction mixture, and the ratio of transmitted to 
incident light intensity, I/I0, is measured as a function of time.  The quantity T = I/I0 is known as the 
transmittance, and may be related to the changing concentration of the absorbing species using 
the Beer Lambert law. 

   T  =  
I
I0

  =  10 − εcl  or T  =  
I
I0

  =  e− αcl  

 
You may come across the Beer Lambert law in either of the forms above, or in log form 
 
   log(I/I0) = −εcl   or ln(I/I0)  =  −αcl 
 
In the above equations, c is the concentration of the absorbing species and l is the path length 
through the sample. ε and α are known as the molar absorption coefficient and molar exctinction 
coefficient, and are a measure of the strength of the spectral absorption.  The quantity εcl is called 
the absorbance, A.  Note that A = - logT.  You may also see this quantity referred to as the optical 
density. 
 
 
Resonance fluorescence 
 
Resonance fluorescence is a widely used technique for 
detecting atomic species such as H, N, O, Br, Cl or F.  The 
light source is a discharge lamp filled with a mixture of 
helium and a molecular precursor for the atom of interest.  A 
microwave discharge inside the lamp dissociates the 
precursor and produces a mixture of ground state and 
excited state atoms.  The lamp then emits radiation at 
characteristic frequencies as the excited state atoms emit 
photons to relax down to the ground state.  This radiation 
may be used to excite atoms of the same species present in 
a reaction mixture, and monitoring the intensity of radiation emitted from these atoms as they relax 
back to the ground state provides a measure of their concentration in the reaction mixture.  To 
ensure that the detected light originates from atoms in the reaction mixture and not the lamp, the 
detector – usually a photomultiplier tube – is placed at right angles to the direction in which 
radiation exits the lamp. 
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Laser-induced fluorescence 
 
In laser-induced fluorescence a laser is used to excite a chosen species in a reaction mixture to an 
electronically excited state.  The excited states then emit photons to return to the ground state, and 
the intensity of this fluorescent emission is measured.  Because the number of excited states 
produced by the laser pulse is proportional to the number of ground state molecules present in the 
reaction mixture, the fluorescence intensity provides a measure of the concentration of the chosen 
species. 
 
 
(iii) Temperature control and measurement 
 
For any reaction with a non-zero activation energy, the rate constant is dependent on temperature. 
The temperature dependence is often modelled by the Arrhenius equation, which will be treated in 
more detail in Section 18. 
      k = A exp(-Ea/RT) 
 
where Ea is the activation energy for the reaction, and A is a constant known as the pre-
exponential factor. 
 
This temperature dependence means that in order to measure an accurate value for k, the 
temperature of the reaction mixture must be maintained at a constant, known value.  If activation 
energies are to be measured as part of the kinetic study, rate constants must be measured at a 
series of temperatures.   The temperature is most commonly monitored using a thermocouple, due 
to its wide range of operation and potential for automation; however, standard thermometers are 
also commonly used.  
 
There are numerous ways in which the temperature of a reaction mixture may be controlled.  For 
example, reactions in the liquid phase may be carried out in a temperature-controlled thermostat, 
while reactions in the gas phase are usually carried out inside a stainless steel vacuum chamber, 
in which thermal equilibrium at the temperature of the chamber is maintained through collisions of 
the gas molecules with the chamber walls.  High temperatures up to 1300 K may be obtained using 
conventional heaters.  Low temperatures may be achieved by flowing cooled liquid through the 
walls of the reaction vessel, and very low temperatures may be reached by using cryogenic liquids 
such as liquid nitrogen (~77 K) or liquid helium (~4 K).  Extremely low temperatures (down to a few 
Kelvin), such as those relevant to reactions in interstellar gas clouds, may be obtained by 
preparing the reactant gases in a supersonic expansion (see Section 9 of the Properties of Gases 
handout). 
 
 
9.  Complex reactions 
 
In kinetics, a ‘complex reaction’ simply means a reaction whose mechanism comprises more than 
one elementary step.  In the previous sections we have looked at experimental methods for 
measuring reaction rates to provide kinetic data that may be compared with the predictions of 
theory.  In the following sections, we will look at a range of different types of complex reactions and 
the rate laws that may be predicted from their kinetic mechanisms.  Disagreement of a predicted 
rate law with the experimental data is enough to rule out the corresponding proposed mechanism, 
while agreement inspires some confidence that the proposed mechanism is the correct one.  It 
should be noted though that agreement between the predicted and measured kinetics is not 
always enough to assign a mechanism.  The proposed mechanism must be able to account for all 
other properties of the reaction, which may include quantities such as the product distribution, 
product stereochemistry, kinetic isotope effects, temperature dependence, and so on. 
 
The types of complex mechanisms that we will cover are: consecutive (or sequential) reactions; 
competing reactions; pre-equlibria; unimolecular reactions; third order reactions; enzyme reactions; 
chain reactions; and explosions. 



 14 

10.  Consecutive reactions 
 
The simplest complex reaction consists of two consecutive, irreversible elementary steps e.g. 

    A →
k1

 B →
k2

 C  
 
An example of such a process is radioactive decay.  This is one of the few kinetic schemes in 
which it is fairly straightforward to solve the rate equations analytically, so we will look at this 
example in some detail.  We can see immediately that the following initial conditions hold. 
 
 at t = 0,   [A] = [A]0  
    [B] = 0  
    [C] = 0  
 
 with at all times  [A]+[B]+[C] = [A]0. 
 
Using this information, we can set up the rate equations for the process and solve them to 
determine the concentrations of [A], [B], and [C] as a function of time.  The rate equations for the 
concentrations of A, B, and C are: 
 

  (1)  
d[A]
dt  = - k1[A]  

  (2)  
d[B]
dt  =  k1[A] - k2[B]  

  (3)  
d[C]
dt  = - k2[B]  

 
Integrating (1) gives  
    [A] = [A]0 exp(-k1t). 
 

Substituting this into (2) gives 
d[B]
dt  + k2[B] = k1[A]0 exp(-k1t) , a differential equation with the solution 

 

    [B] = 
k1

k2-k1
 {exp(-k1t) - exp(-k2t)} [A]0  

 
Finally, since [C] = [A]0–[B]–[A], we find 
 

    [C]  = ⎝
⎛

⎠
⎞1 + 

k1exp(-k2t) - k2exp(-k1t)
k2-k1

 [A]0  

 
We will consider two special cases for a pair of sequential reactions: 
 
 
Case 1: k1 >> k2 
 
In this case, all of the A initially present is rapidly converted into B, which is then slowly used up to 
form C.  Since k2 becomes negligible in comparison with k1, the equation for [C] becomes 
 
    [C] = {1 - exp(-k2t)} [A]0 
 
i.e. the rate of production of C (and therefore the overall rate of the two-step reaction) becomes 
independent of k1 (apart from at the very beginning of the reaction).  In other words, the second 
step is the rate determining step.  
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Case 2: k2 >> k1 
 
In this case, B is consumed as soon as it is produced, and since k1 becomes negligible in 
comparison with k2, the equation for [C] simplifies to 
 
    [C] = {1 - exp(-k1t)} [A]0 

 
i.e. the overall rate now depends only on k1, and the first step is rate determining.  
 
The way in which the concentrations of A, B and C vary with time for each of the two cases 
considered above is shown in the figures below. 
 
 

  
 
 
11.  Pre-equilibria 
 
A situation that is only slightly more complicated than the sequential reaction scheme described 
above is 

     A + B 
-k1

¾
k1

  C  →
k2

  D  

 
The rate equations for this reaction are:   

     
d[A]
dt   =  

d[B]
dt   =  -k1[A][B] + k-1[C]     

     
d[C]
dt   =  k1[A][B] - k2[C]  

     
d[D]
dt   =  k2[C]  

 
These cannot be solved analytically, and in general would have to be integrated numerically to 
obtain an accurate solution.  However, the situation simplifies considerably if k-1 >> k2.  In this case, 
an equilibrium is reached between the reactants A and B and the intermediate C, and the 
equlibrium is only perturbed very slightly by C ‘leaking away’ very slowly to form the product D. 
 
If we assume that we can neglect this perturbation of the equilibrium, then once equilibrium is 
reached, the rates of the forward and reverse reactions must be equal. i.e. 
 
     k1[A][B] = k-1[C] 
 
Rearranging this equation, we find 

     
k1
k-1

  =  
[C]

[A][B]  =  K  
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The equilibrium constant K is therefore given by the ratio of the rate constants k1 and k-1 for the 
forward and reverse reactions.  The rate of the overall reaction is simply the rate of formation of the 
product D, so 

     ν  =  
d[D]
dt    =   k2[C]  =  k2K[A][B]  

 
The reaction therefore follows second order kinetics, with an effective rate constant keff = k2K.  Note 
that this rate law will not hold until the equilibrium between A, B and C has been established, and 
so is unlikely to be accurate in the very early stages of the reaction.    
 
     
12.  The steady state approximation 
 
Apart from the two simple examples described above, the rate equations for virtually all complex 
reaction mechanisms generally comprise a complicated system of coupled differential equations 
that cannot be solved analytically.   In state-of-the-art kinetic modelling studies, fairly sophisticated 
software is generally used to obtain numerical solutions to the rate equations in order to determine 
the time-varying concentrations of all species involved in a reaction sequence.  However, very 
good approximate solutions may often be obtained by making simple assumptions about the 
nature of reactive intermediates. 
 
Almost by definition, a reactive intermediate R will be used up virtually as soon as it is formed, and 
therefore its concentration will remain very low and essentially constant throughout the course of 
the reaction.  This is true at all times apart from at the very start of the reaction, when [R] must 
necessarily build up from zero to some small non-zero value, and at the very end of the reaction in 
the case of a reaction that goes to completion, when [R] must return to zero.  During the period of 
time when [R] is essentially constant, because d[R]/dt is so much less than the rates of change of 
the reactant and product concentrations, it is a good approximation to set d[R]/dt = 0.  This is 
known as the steady state approximation. 
 
Steady state approximation: if a reactive intermediate R is present at low and constant 
concentration throughout (most of) the course of the reaction, then we can set d[R]/dt = 0 in the 
rate equations. 
 
As we shall see, applying the steady state approximation has the effect of converting a 
mathematically intractable set of coupled differential equations into a system of simultaneous 
algebraic equations, one for each species involved in the reaction.  The algebraic equations may 
be solved to find the concentrations of the reactive intermediates, and these may then be 
substituted back into the more general equations to obtain an expression for the overall rate law. 
 
As a simple example, let us look at the same reaction scheme as in the preequilibrium of Section 
11, but now take the case where k2 >> k-1, so that C is now a reactive intermediate and there is no 
stable equilibrium between A, B and C.  The reaction equation is 
 

     A + B 
-k1

¾
k1

  C  →
k2

  D  

 
We can apply the steady state approximation (SSA) to C, to obtain 
 

     
d[C]
dt   =  0  =  k1[A][B] - k-1[C] - k2[C]  

 
This may be solved to give [C] in terms of the reactant concentrations [A] and [B]. 
 

     [C]  =  k1
k-1 + k2

 [A][B]  
 



 17

The overall rate is the rate of formation of the product, D, giving 
 

     ν  =  
d[D]
dt   =  k2[C]  =  

k1k2
k-1 + k2

[A][B]  

 
In the limiting case where k-1 is much smaller than k2, we can neglect k-1 in the denominator and 
the rate becomes simply k1[A][B] i.e. the rate of the overall reaction is the same as the rate of the 
first elementary step. This is not all that surprising.  If k2 is much larger than k1 and k-1 then as soon 
as the A + B → C step has occurred, C is immediately converted into products, and there is 
virtually no chance for the reverse C → A + B reaction to occur.  The initial elementary step is rate 
determining, and therefore dominates the kinetics. 
 
We will come across many more applications of the SSA in the next few sections.  In general, the 
steps required in order to use the SSA to obtain an overall rate law for a complex reaction are: 
 
1.   Write down a steady state equation for each reactive intermediate. 
 
2. Solve the set of equations to obtain expressions for the concentrations of each intermediate 
 in terms of the reactant and product concentrations.  A couple of hints: 
 
 (i)   If the equation contains only one reactive intermediate, it may simply be rearranged 
  to give the concentration of that intermediate in terms of reactant and product  
  concentrations.  This can often be substituted into other equations to obtain the  
  corresponding expressions for other reactive intermediates. 
 
 (ii) If the equations depend on more than one reactive intermediate, and share terms, 
  look for sums or differences of the equations that will simplify matters.  Often a SSA 
  problem that initially appears extremely complicated becomes trivial when you  
  simply add together two of the steady state equations. 
 
3.   Write down an expression for the overall rate (usually the rate of change of one of the 
 products).  This will generally involve the concentrations of one or more reactive 
 intermediates. 
 
4.  Substitute your expressions from step 2 into your overall rate equation to obtain an overall 
 rate equation that depends only on reactant and product concentrations.  Concentrations of 
 reactive intermediates must not appear in the final rate law. 
 
 
 
13.  ‘Unimolecular’ reactions – the Lindemann-Hinshelwood mechanism 
 
A number of gas phase reactions follow first order kinetics and apparently only involve one 
chemical species.  Examples include the structural isomerisation of cyclopropane to propene, and 
the decomposition of azomethane (CH2N2CH3 → C2H6 + N2, with experimentally determined rate 
law ν = k[CH3N2CH3])   The mechanism by which these molecules acquire enough energy to react 
remained a puzzle for some time, particularly since the rate law seemed to rule out a bimolecular 
step.  The puzzle was solved by Lindemann in 1922, when he proposed the following mechanism 
for ‘thermal’ unimolecular reactions1. 

     A + M  
k-1
¾
k1

  A* + M    

           A*  →
k2

  P         
 
                                                 
1 Unimolecular reactions, and indeed many other types of reaction, may also be initiated photochemically by 
absorption of a photon.  You will cover photochemical reactions in second and third year courses. 
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The reactant, A, acquires enough energy to react by colliding with another molecule, M (note that 
in many cases M will actually be another A molecule).  The excited reactant A* then undergoes 
unimolecular reaction to form the products, P.  To determine the overall rate law arising from this 
mechanism, we can apply the SSA to the excited state A*. 
 

    
d[A*]

dt   =  0  =  k1[A][M] - k-1[A*][M] - k2[A*]   (13.1) 

 
Rearranging this expression yields the concentration [A*]. 
  

     [A*]  =  
k1[A][M]

k-1[M] + k2
      (13.2) 

The overall rate of reaction is then 
 

    ν  =  
d[P]
dt   =  k2[A*]  =  

k1k2[A][M]
k-1[M] + k2

      (13.3) 

 
At first sight, this does not look very much like a first order rate law!  However, consider the 
behaviour of this rate law in the limits of high and low pressure. 
 
High pressure 
At high pressure there are many collisions, and collisional de-excitation of A* is therefore much 
more likely than unimolecular reaction of A* to form products.  i.e. k-1[A*][M] >> k2[A*].  In this limit, 
we can neglect the k2 term in the denominator of Equation (13.3), and the rate law becomes: 
 

     ν  =  
k1k2
k-1

 [A]       (13.4) 

 
which is first order, with a first order rate constant kuni=k1k2/k-1.  This mechanism therefore explains 
the observed first order kinetics at reasonable pressures, when the unimolecular step is rate 
determining. 
 
Low pressure 
At low pressures there are few collisions, and A* will generally undergo unimolecular reaction 
before it undergoes collisional de-excitation.  i.e. k2 >> k-1[A*][M].  In this case, we can neglect the 
k-1[M] in the denominator of Equation (13.3), and the rate law is now 
 
     ν  =  k1[A][M]       (13.5) 
 
We see that at low pressures the kinetics are second order.  This is because formation of the 
excited species A*, a bimolecular process, is now the rate determining step. 
 
Often, the rate law for such reactions is written 
 

    ν  = k[A]  with  k  = 
k1k2[M]

k-1[M]+k2
     (13.6) 

 
k is the first order rate constant that would be observed experimentally in the high pressure case. 
If experimental measurements of the rate constant as a function of pressure (equivalent to [M]) are 
available, the Lindemann-Hinshelwood mechanism may be tested.  Taking the reciprocal of our 
expression for k gives 

     
1
k  =  

k-1
k1k2

 + 
1

k1[M]      (13.7) 

 
A plot of 1/k against 1/[M] should therefore be linear, with an intercept of k-1/(k1k2) and a slope of 
1/k1.  An example of such a plot is shown below.  Usually there is a reasonable fit between theory 
and experiment at low pressure, but a pronounced deviation at high pressure, with experimental 
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values of k being larger than the values predicted by the Lindemann-Hinshelwood mechanism, as 
shown below. 
 

It turns out that while the general idea of a collisional activation 
process is correct, the true mechanism of ‘unimolecular’ reactions 
is slightly more involved.  The principal failing of the Lindemann-
Hinshelwood mechanism is that it assumes that any excited 
reactant A* will undergo unimolecular reaction to produce 
products.  In practice, however, excitation is generally required in 
a degree of freedom that is coupled to the reaction coordinate in 
some way e.g. vibrational excitation in a bond that breaks during 
the reaction.  More sophisticated theories of unimolecular 
reactions have been developed which take this and other factors 
into account, and provide much better agreement with 
experiment.   

 
 
14.  Third order reactions 
 
A number of reactions are found to have third order kinetics.  An example is the oxidation of NO, 
for which the overall reaction equation and rate law are given below. 
  

   2NO + O2 → 2NO2  
d[NO2]

dt  = k [NO]2[O2]  

 
One possibility for the mechanism of this reaction would be a three-body collision (i.e. a true 
termolecular reaction).  However, such collisions are exceedingly rare, and certainly too unlikely to 
explain the observed rate at which this reaction proceeds.  An added complication is that the rate 
of this reaction is found to decrease with increasing temperature, an indication of a complex 
mechanism.  An alternative mechanism that leads to the same rate law is a two step process 
involving a pre-equilibrium. 
 

      NO + NO 
k-1
¾
k1

 (NO)2  

  

     (NO)2 + O2 →
k2

 2NO2  
 
The overall rate is  

    ν  =  
1
2

d[NO2]
dt   =  k2[(NO)2][O2]  

 
However, from the pre-equilibrium, we have 
 

    K  =  
[(NO)2]
[NO]2      so  [(NO)2]  =  K[NO]2 

and the overall rate is 
 
     ν  =  k2K [NO]2[O2] 
 
i.e. third order, as required. 
 
A very common situation in which third order kinetics are observed are reactions in which two 
reactants combine to form a single product.  Such reactions require a so-called ‘third body’ to take 
away some of the excess energy from the reaction product.  An example is the formation of ozone 
 
     O + O2 →  O3 
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As written, this reaction would barely occur.  To understand the reason for this we need to turn to 
some basic classical mechanics, namely the fact that energy and momentum must both be 
conserved in the reactive collision. To demonstrate the problem, consider the somewhat contrived 
situation in which the O and O2 initially have equal and opposite momenta, and collide head-on to 
react (the following arguments apply equally well to any other situation, but are clearest to see in 
this case).  Since total momentum must be conserved, and initially the total momentum is zero 
(because the momenta of the O and O2 exactly cancel each other out), the final momentum of the 
O3 product must be zero i.e. the product must be stationary.  Now consider conservation of energy. 
Since we are forming a bond, the reaction is exothermic, so by conservation of energy, the total 
kinetic energy possessed by the O3 product must be the sum of the reaction exothermicity and the 
kinetic energies of the reactants.  We have already determined that conservation of momentum 
requires the O3 to be stationary, so all of this kinetic energy must go into vibrational motion of the 
O3.  Highly vibrationally excited molecules are extremely unstable, and the O3 will very quickly fall 
apart back into reactants.  The only way for the O3 to survive is for it to transfer some of its 
vibrational energy to another molecule M (known as a third body) in a collision.  The energy may 
end up as internal excitation (rotation or vibration) of M, or simply as kinetic energy as the two 
molecules fly away from each other after the collision.  The actual mechanism is therefore 
 
      O + O2 ¾ O3* 
     O3* + M → O3 + M 
 
The overall reaction is usually written O + O2 + M → O3 + M.   
 
Note that a third body is only required for reactions in which a single product is formed from two or 
more reactants, since this is the only time that conservation of momentum forces a large amount of 
energy into the product.  If two products are formed, they can both carry away almost arbitrary 
amounts of energy as kinetic energy while still conserving the total momentum. 
 
 
15.  Enzyme reactions – the Michaelis-Menten mechanism 
 
An enzyme is a protein that catalyses a chemical reaction by lowering the activation energy.   
Enzymes generally work by having an active site that is carefully designed by nature to bind a 
particular reactant molecule (known as the substrate).  An example of a substrate bound at the 
active site of an enzyme is shown on the left (stolen from http://www.csb.gu.se/neutze/elastase. 
html).  The activation energy of the reaction for the enzyme-bound substrate is lower than for the 
free substrate molecule, often due to the fact that the interactions involved in binding shift the 

substrate geometry closer to that of the transition state for the 
reaction.  Once reaction has occurred, the product molecules are 
released from the enzyme.   
 
Virtually every chemical reaction in biology requires an enzyme in 
order to occur at a significant rate (enzyme-catalysed reactions 
are millions of times faster than the corresponding uncatalysed 
reactions), and each enzyme is specific to a particular reaction.  
Many drugs work by binding to a carefully targeted enzyme in 
place of the normal substrate molecule, thereby inhibiting enzyme 
activity and slowing the reaction rate.  Enzyme kinetics is an 
extremely important and complex field, but the basic kinetics of a 
simple enzyme catalysis process may be modelled quite simply, 
as follows.  
 

In an enzyme-catalysed reaction, a substrate S is converted to products P in a reaction that is 
catalysed by an enzyme E.  For many such reactions, the rate is found experimentally to follow the 
Michaelis-Menten equation 

      ν  =  
νmax[S]
KM+[S]      (15.1) 
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The constant KM is called the Michaelis constant, and νmax is the maximum rate, which is found to 
be linearly proportional to the total enzyme concentration. 
 
      νmax = kcat[E]0     (15.2) 
 
The constant of proportionality kcat is known as the turnover number, and represents the maximum 
number of molecules of substrate that each enzyme molecule can convert into products (or ‘turn 
over’) per second.  We shall see later that this occurs when the substrate is present in large 
excess. 
 
Any kinetic model for enzyme catalysis must explain the fact that the rate depends on the enzyme 
concentration [E], even though there is no net change in its concentration over the course of the 
reaction.  The simplest trial mechanism involves formation of a bound enzyme-substrate complex 
ES, followed by conversion of the complex into the products plus free enzyme (which may then go 
on to catalyse further reaction).   

     E + S 
-k1

¾
k1

  ES  →
k2

  P + E     (15.3) 

 
This mechanism is a somewhat special case of applying the steady state approximation.  Usually a 
good rule of thumb is that in order for the SSA to be valid, the concentration of the reactive 
intermediate (in this case ES) must be much less than the concentration of the reactants.  In this 
case [ES] is not much less than the free enzyme concentration [E].  However, because [E] is 
regenerated in the second step of the mechanism, both [E] and [ES] change much more slowly 
than [S] and [P] so the SSA is valid.  Applying the SSA to [ES], we have 
 

    
d[ES]

dt   =  0  =  k1[E][S] - k-1[ES] - k2[ES]    (15.4) 

 
Solving for the concentration of the complex, [ES], we obtain 
 

     [ES] = 
k1[E][S]
k-1+k2

      (15.5) 

 
If the total enzyme concentration is [E]0, then the amount of free enzyme must be [E] = [E]0 – [ES]. 
 Substituting this into the above equation gives 
 

  [ES] = 
k1([E]0-[ES])[S]

k-1+k2
 , which rearranges to give  [ES] = 

k1[E]0[S]
k-1+k2+k1[S]  (15.6) 

 
The overall rate of reaction is then found from the rate of formation of product, P. 
 

   ν  =  
d[P]
dt   =  k2[ES]  =  

k2k1[E]0[S]
k-1+k2+k1[S]  =  

k2[S][E]0
KM+[S]   =  k [E]0   (15.7) 

   

  where k = 
k2[S]

KM+[S]  and KM  =  
k2+k-1

k1
 is called the Michaelis constant.   

 
We have chosen these particular combinations of rate constants in order to get our rate equation 
into the same form as the Michaelis-Menten equation.  The two equations now agree if k2 = kcat.   
 
We can see from the above treatment that the rate of enzyme-catalysed reaction (enzymolysis) 
depends linearly on the enzyme concentration, but in a more complicated way on the substrate 
concentration.  The dependence on [S] simplifies under certain conditions. 
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1.   When [S] >> KM, then ν = k2[E]0 = kcat[E]0 and the overall rate is independent of the 
 substrate concentration.  This is because there is so much substrate present that its 
 concentration  remains essentially constant as the reaction proceeds.  Under these 
 conditions, the rate of reaction is a maximum (ν = νmax) and the enzyme is saturated with 
 substrate. 
 
2.   When [S] << KM, the reaction rate is ν = (k2/KM) [E]0[S], and the rate is first order in both 
 [E]0 and [S]. 
 
 
To determine k2 and KM from experimental rate data, we invert the expression for k. 
 

    k  =  
k2[S]

KM+[S]       becomes    
1
k  =  

KM
k2[S] + 

1
k2

  

 
A plot of 1/k against 1/[S] has a slope of KM/k2 and an intercept of 1/k2.  Therefore, KM = 
(slope)/(intercept) and k2 = 1/(intercept).  This is called a Lineweaver-Burke plot.  Usually, the initial 
rates method is used to measure k, since this method is not susceptible to complications that may 
arise from secondary reactions of the products.  
 
 
16.  Chain reactions 
 
Chain reactions are complex reactions that involve chain carriers, reactive intermediates which 
react to produce further reactive intermediates.  The elementary steps in a chain reaction may be 
classified into initiation, propagation, inhibition, and termination steps.   As an example, consider 
the infamous reaction by which chlorofluorocarbons (CFCs) destroy ozone: 
 
   CnFmCl + hν →  ½CnFm + ½Cl   Initiation 
   ½Cl + O3 → ½ClO + O2    Propagation 
   ½ClO + O → ½Cl + O2    Propagation 
              ½Cl + CH4  → ½CH3 + HCl   Termination 
 
Initiation step 
Reaction is initiated either thermally or photochemically.  The first reactive intermediates/chain 
carriers (in this case a ½Cl radical) are produced. 
  
Propagation step 
Reaction of a radical leads to formation of another radical – another reactive intermediate.  In the 
first propagation step above, ½Cl reacts to form ½ClO; in the second step ½ClO reacts to form ½Cl. 
 
Termination step 
Chain carriers are deactivated.  Often this occurs through radical-radical recombination, reaction 
with walls, or reaction with another molecule to create an inactive product. 
 
Some chain reactions involve inhibition steps, in which product molecules are destroyed.  Inhibition 
steps are also sometimes referred to as retardation or de-propagation steps. 
 
The chain length in a chain reaction is defined as the number of propagation steps per initiation 
step, or alternatively as the rate of propagation divided by the rate of initiation.  Chain lengths can 
be very long – in the above example a single ½Cl radical can destroy around 106 molecules of 
ozone. 

   chain length,  n  =  
ν(propagation)

ν(initiation)   =  
ν(propagation)
ν(termination)  
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The above reaction is an example of a cyclic chain reaction.  The ½Cl essentially acts as a catalyst 
and is continuously regenerated until it is removed by a termination step.   It is also possible to 
have non-cyclic chain reactions, involving many reactive species and elementary steps.  Non-cyclic 
chain reactions can have extremely complicated kinetic mechanisms. 
 
Chain reactions in which each propagation step produces only one reactive intermediate are called 
linear chain reactions (as opposed to branched chain reactions, which we will cover in Section 18). 
 We will look at some examples of linear chain reactions in the following section.   
 
 
17.  Linear chain reactions 
 
The hydrogen-bromine reaction has become the ‘benchmark’ system for illustrating the kinetics of 
linear chain reactions, and we will use this reaction as our main example.  We will also compare 
the kinetics of the hydrogen-bromine reaction with the analagous reactions of chlorine and iodine.  
Some further examples of chain reactions may be found in the lecture course problems. 
 
 
The hydrogen – bromine reaction 
 
The kinetics of the reaction between H2 and Br2 were determined experimentally by Bodenstein 
around 100 years ago. The overall reaction has the equation 
 
     H2 + Br2 → 2HBr     (17.1) 
 
Bodenstein determined the following rate law for the reaction: 
 

     d[HBr]
dt  = k [H2][Br2]1/2      (17.2) 

 
The measured order of ½ with respect to Br2 indicated that the reaction proceeded via a complex 
reaction mechanism rather than a simple bimolecular collision.  Further investigation showed that 
this rate law in fact only holds for the early stages of the reaction, and that the true rate law takes 
the form: 

     
d[HBr]

dt   =  
k [H2][Br2]1/2

1 + k' [HBr]/[Br2]     (17.3) 

 
Any proposed mechanism for the reaction must agree with both of these observations.  The 
reaction can be initiated by either thermally-induced or photon-induced dissociation of Br2. 
 
   Br2 + M → Br + Br + M or  Br2 + hν → Br + Br  
 
We will concentrate on the thermal mechanism for the purposes of deriving a rate law for the 
overall reaction, but the steps following the initiation step are the same for both cases.  The 
currently accepted mechanism is: 

     Br2 + M  →
k1

  Br½ + Br½ + M Initiation 

     Br½ + H2 
k-2

¾
k2

  H½ + HBr  Propagation / Inhibition 

     H½ + Br2 →
k3

  Br½ + HBr  Propagation 

        Br½ + Br½ + M →
k4

  Br2 + M  Termination  (17.4) 
 
The reaction chain contains two radical chain carriers, H½ and Br½.  In the second step, because the 
H-H bond is stronger than the H-Br bond, once an appreciable amount of HBr has built up the 
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reverse (inhibition) reaction becomes possible.  In order to arrive at an overall rate law for the 
reaction, we apply the steady state approximation to the two chain carriers. 
 

  
d[H]
dt   =  0  =  k2[Br][H2] - k-2[H][Br] - k3[H][Br2]     (17.5) 

 

  
d[Br]

dt   =  0  =  2k1[Br2][M] - k2[Br][H2] + k-2[H][HBr] + k3[H][Br2] - 2k4[Br]2[M]  (17.6) 

 
We can solve these two equations to obtain expressions for the concentrations of H and Br in 
terms of the reactant and product concentrations and the various rate constants.   The two 
equations each depend on both carrier concentrations, and also share terms.  We can simplify the 
equations by adding them together to give: 
 
     0  =  2k1[Br2][M] – 2k4[Br]2[M]     (17.7) 
 
which can be rearranged to give the steady state concentration of Br atoms. 
 

    [Br]  =  ⎝
⎛

⎠
⎞k1[Br2]

k4

1/2

       (17.8) 

 
Note that (17.7) implies that the rate of initiation is the same as the rate of termination, as expected 
under steady state conditions (this is a good check that we have made no mistakes up to this 
point).  This result also leads to a considerable simplification in Equation (17.6), which now 
becomes 
    0  =  -k2[Br][H2] + k-2[H][HBr] + k3[H][Br2]   (17.9)  
 
and may be rearranged to give an expression for the steady state H atom concentration. 
 

   [H]  =  
k2[Br][H2]

k2[HBr] + k3[Br2]  =  
k2[H2]

k2[HBr] + k3[Br2] ⎝
⎛

⎠
⎞k1[Br2]

k4

1/2

   (17.10) 

 
We are now ready to determine the overall reaction rate. 
 

    
d[HBr]

dt   = k2[Br][H2] – k-2[H][HBr] + k3[H][Br2]   (17.11) 

 
Substituting in our expressions for [H] and [Br] gives 
 

    
d[HBr]

dt   =  
2k2(k1/k4)1/2[Br2]1/2[H2]
1 + (k-2/k3)[HBr]/[Br2]      (17.12) 

 
We see that this agrees with the measured rate law, Equation (17.3).  In the early stages of the 
reaction, the concentration of the HBr product is much lower than that of the reactant Br2, and the 
second term in the denominator becomes negligible.  The rate law then reduces to 
 

    
d[HBr]

dt   =  2k2(k1/k4)1/2[Br2]1/2[H2]     (17.13)  

 
again reproducing the experimental observations.  The proposed mechanism therefore fits well 
with the experimental measurements. 
     
The hydrogen – chlorine reaction 
 
The mechanism for the hydrogen-chlorine reaction is essentially identical to that for the hydrogen-
bromine reaction 
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     Cl2 + M   →
k1

  Cl½ + Cl½   Initiation 

     Cl½ + H2 →
k2

  H½ + HCl  Propagation  

     H½ + Br2 →
k3

  Cl½ + HCl  Propagation 

        Cl½ + Cl½ + M →
k4

 Cl2 + M  Termination  (17.14) 
 
The reaction may also be initiated photochemically.  Unlike the H2+Br2 reaction, both propagation 
steps are very efficient, and the inhibition step is very slow (and has therefore been omitted from 
the above mechanism), so the overall reaction rate is much faster.  Chain lengths up to 106 are 
possible, and coupled with the exothermicity of the reaction, this can lead to a thermal explosion. 
 
This reaction provides a good example of a case where the steady state approximation breaks 
down.  Since both propagation steps are very efficient, when the radical concentrations [H] and [Cl] 
are much lower than the reactant concentrations [H2] and [Cl2], reactive collision of a Cl atom with 
H2 (propagation) is much more likely than a terminating collision with another Cl atom.  This means 
that the reaction may be very advanced before the steady state condition – that the rates of 
initiation and termination are equal – is reached.  In practice, the situation is usually simplified 
somewhat due to the extreme sensitivity of the reaction to inhibition by contaminants such as O2.  
Oxygen reacts with H and Cl radicals to form inert radicals, providing an alternative termination 
pathway and increasing the overall rate of termination.  If O2 is present at a concentration of 
around 1% or greater, the following termination steps dominate to the point where the steady-state 
approximation becomes valid. 

     H½ + O2 + M →
k5

 ½HO2 + M 

     Cl½ + O2 + M →
k6

 ½ClO2 + M 
 
If we replace the termination step 4 of our above mechanism with the termination steps above, we 
can apply the SSA to obtain expressions for the steady state [H] and [Cl] concentrations and (after 
some algebra – left as an exercise for the keen reader!) for the overall rate. 
 

   
d[HCl]

dt   =  
2ka[H2][Cl2]2

[O2]([H2] + kb[Cl2])       with     ka = 
k1k2
k5

     and     kb = 
k3k6
k2k5

  

 
 
The hydrogen-iodine reaction 
 
We might expect the hydrogen-iodine to have a similar mechanism to the bromine and chlorine 
analogues.  However, the second step in the mechanism (I + H2 → H + HI) occurs much too slowly 
at normal temperatures for this mechanism to be viable.  Various kinetic mechanisms operate at 
different temperatures, for example 
 
        I2 + M ¾ I + I + M  Pre-equilibrium 
    I + I + H2 → 2HI  Termolecular reaction 
 
Unlike the complicated rate laws followed by the chlorine and bromine reactions, the hydrogen-
iodine reaction follows a simple ‘bimolecular’ rate law (you could prove this as an exercise). 
  
 
Comparison of the hydrogen-halogen reactions 
 
The key difference between the reactions of Cl2, Br2 and I2 with hydrogen lies in the exothermicity 
of the atomic halogen reactions with H2 (step 2 in the chain reaction sequences). 
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    Cl ΔH =     4.4 kJ mol-1 
    Br ΔH =   69.6 kJ mol-1 
    I ΔH = 137.7 kJ mol-1 
 
The iodine reaction is so slow that it does not occur at accessible temperatures, ruling out the 
chain mechanism observed for the other two halogens.  The chlorine reaction is fast, and the 
bromine reaction slow.  While the reverse (inhibition) step H + HX → X + H2 is thermodynamically 
favourable for both Cl and Br, it is unimportant for Cl due to the very low steady state concentration 
of H atoms.  In contrast, the inhibition step has a considerable effect on the overall kinetics of the 
bromine reaction.  
 
 
18.  Explosions and branched chain reactions 
 
An explosion occurs when a reaction rate accelerates out of control.  As the reaction speeds up, 
gaseous products are formed in larger and larger amounts, and more and more heat is generated. 
The rapid liberation of heat causes the gases to expand, generating extremely high pressures, and 
it is this sudden formation of a huge volume of expanded gas that constitutes the explosion.  The 
pressure wave travels at very high speeds, often much faster than the speed of sound, and the 
‘bang’ associated with an explosion is the result of a supersonic shock wave. 
 
There are two different mechanisms that may lead to an explosion.  These are related to the fact 
that the overall reaction rate depends on both the magnitude of the rate constant and the amounts 
of reactants present in the reaction mixture.   
 
If the heat generated in a reaction due to the reaction exothermicity cannot be dissipated 
sufficiently rapidly, the temperature of the reaction mixture increases.  This increases the rate 
constant, and therefore the reaction rate, producing more heat and accelerating the reaction rate 
still further, and so on until an explosion results.  Such explosions are known as thermal 
explosions, and in principle may occur whenever the rate of heat production by a reaction mixture 
exceeds the rate of heat loss to the surroundings (often the walls of the reaction vessel).  
 
The second category of explosions arise from chain branching within a chain reaction, and are 
known as chain branching explosions (or sometimes, somewhat misleadingly, isothermal 
explosions).  In this case, one or more steps in the reaction mechanism produce two or more chain 
carriers from one chain carrier, increasing the number of chain carriers, and therefore the overall 
reaction rate. 
 
In practice, both mechanisms often occur simultaneously, since any acceleration in the rate of an 
exothermic reaction will eventually lead to an increase in temperature.   However, chain branching 
is not a requirement for an explosion.  As an example, detonation of TNT (2,4,6-trinitrotoluene) is 
simply the result of an extremely fast chemical decomposition that generates huge quantities of 
gas.  The reaction 2H2(g) + O2(g) → 2H2O(g) provides an example of a reaction in which both 
mechanisms are important. 
 
 
The hydrogen – oxygen reaction:  2H2(g) + O2(g) → 2H2O(g) 
 
Though this may at first sight appear to be a very simple reaction, the mechanism is in fact 
extremely complex, and is still not fully understood.  It is known to be a branched chain reaction, 
involving carriers such as H½, ½O½ and ½OH.  A simplified version of the thermal mechanism is given 
below. 

      H2  + wall  →
k1

  H½ + H½ + wall Initiation 

         H½ + O2  →
k2

  ½OH + ½O½  Branching 
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        ½O½ + H2  →
k3

  ½OH + H½  Branching 

       ½OH + H2  →
k4

  H½ + H2O  Propagation 

   H½ + O2 + M  →
k5

  ½HO2 + M  Termination 

        H½ + wall  →
k6

  H-wall  Termination 

       ½O½ + wall  →
k7

  O-wall  Termination 

      ½OH + wall  →
k8

  OH-wall  Termination 
 
Each of reactions 2 and 3 produce two radical chain carriers for each chain carrier consumed.  The 
two steps combine to give an overall branching coefficient of 3, corresponding to the hypothetical 
reaction H½ + O2 + H2  →  H½ + ½OH + ½OH.  Even so, the mixture is not explosive under all 
conditions, mainly because steps 1, 2 and 3 are endothermic (ΔH1 = 427 kJ mol-1, ΔH2 = 71 kJ mol-
1, ΔH3 = 17 kJ mol-1) and therefore slow at low temperatures.  The efficiency of the branching steps 
increases with increasing temperature, and as a result, the reaction displays a complex 
dependence on temperature and pressure, as shown below.   
    
1. At very low pressures the mean free path in the gas is 
 large, and chain carriers can reach the walls and 
 combine.  Collisions with walls are more likely than 
 collisions with other gas phase molecules, so that 
 overall (ν5+ν6+ν7+ν8) = (ν1+ν2+ν3) i.e. termination 
 balances initiation, and steady reaction occurs. 
 
2. At higher pressures, the chain carriers react before 
 reaching the walls and the gas phase branching ratios 
 become too high for wall termination to control (this is 
 largely due to the fact that the rate of gas phase 
 reaction is proportional to p2, while the rate of wall 
 reactions increases in proportion to p).  Now we have 
 (ν1+ν2+ν3) > (ν5+ν6+ν7+ν8), and the mixture becomes 
 explosive.  This is known as the first explosion limit. 
 
3. At higher pressures, three body collisions start to  
 become important.  Termination step 5 can now match steps 1 to 3 in efficiency, and we 
 again have (ν5+ν6+ν7+ν8) = (ν1 + ν2 + ν3) and steady reaction.  This is the second explosion 
 limit. 
 
4. If the pressure is increased still further,  the reaction rate increases so much and such a 
 large amount of heat is generated that a thermal explosion results.  This is the third 
 explosion limit. 
 
The factors that affect the explosion limits are fairly straightforward to understand in terms of their 
effects on the relative rates of initiation, propagation/branching, and termination steps.  For 
example: 
 
(i) Temperature – increasing the temperature increases the efficiency of both endothermic reaction 
 steps and steps for which there is activation barrier (steps 1-4 in the above mechanism).  
 The termination steps are less sensitive to temperature, and may even be slowed down 
 since they tend to be exothermic.  As a result, the first explosion limit is lowered as the 
 rates of steps 2 and 3 outpaces those of steps 6-8 more readily.  The second explosion 
 limit is increased because a higher pressure is needed for the termolecular step 5 to 
 become important.  The third limit is decreased, since at higher temperature more heat is 
 produced, and also the heat that is produced is harder to lose from the system. 
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(ii) Surface/Volume ratio – the shape and size of the reaction vessel can have a considerable effect 
 on the explosion limits.  Increasing the surface to volume ratio favours processes that 
 involve collisions with the vessel walls over gas phase processes, which in this case means 
 the initiation step 1 and termination steps 6, 7 and 8.  The high efficiency of the branching 
 steps means that 1 is unimportant in determining the overall rate, and the increased 
 efficiency of the termination steps increases the pressure at which the first explosion limit is 
 reached.  The second limit has no dependence on the vessel walls and is unchanged. The 
 third limit increases because it becomes easier to lose heat from the system due to the 
 greater number of collisions with the walls. 
 
(iii) Overall pressure – adding an inert gas to the mixture decreases the mean free path of the gas 
 molecules, and disfavours collisions with the walls.  This lowers the first explosion limit 
 since the termination steps 6, 7, and 8 become less efficient.  The second limit is also 
 decreased because the inert gas can act as the third body M, increasing the rate of step 5, 
 a termination process.  The third limit is lowered due to the reduced heat transfer from the 
 gas to the vessel walls. 
 
 
19.  Temperature dependence of reaction rates 
 
The Arrhenius equation and activation energies 
 
It is found experimentally that the rate constants for many chemical reactions follow the Arrhenius 
equation. 

  k  =  A exp(-Ea/RT)        or equivalently lnk  =  lnA - Ea
RT   (19.1) 

 
where A is the pre-exponential factor and Ea is the activation energy.   These parameters may be 
determined from experimental rate data by plotting lnk against 1/T.  This is known as an Arrhenius 
plot, and has an intercept of lnA and a slope of –Ea/R.  For most reactions, the Arrhenius equation 
works fairly well over at least a limited temperature range.  However, there are often deviations.  
These are generally due to the temperature dependence of the pre-exponential factor2 (which you 
will cover in detail in statistical mechanics next year), but may also be due to more exotic effects, 
such as the influence of quantum mechanical tunnelling mechanisms on the reaction rate at low 
temperatures. 
 
 For an elementary reaction, both Ea and A have definite physical meanings; in particular, the 
activation energy may be interpreted as the energy difference 
between the reactants and the transition state involved in the 
collision and associated chemical rearrangement (see figure 
on right). The origins of the Arrhenius equation for a simple 
bimolecular elementary reaction will be explored in more 
detail in Section 20, when we develop simple collision theory. 
 
When the Arrhenius equation is applied to the overall kinetics 
of a multi-step reaction, Ea simply becomes an experimental 
parameter describing the temperature dependence of the 
overall reaction rate.  Ea may vary with temperature, and may 
take positive or negative values.  In this context, we may 
define the activation energy as: 

                                                 
2 The detailed temperature dependence of A is beyond the scope of this course, and will be covered in detail 
next year in the statistical mechanics course.  A very approximate temperature-dependent model for A will be 
seen in Section 20, on simple collision theory.  However, the true origin of the temperature dependence 
relates to the way in which temperature affects the distribution of occupied quantum states in the reacting 
molecules.   
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     Ea  =  RT2 dlnk
dT       (19.2) 

 
This is a more general definition of the activation energy than the Arrhenius equation, and the two 
definitions become equivalent in the case when Ea is independent of temperature (all you need to 
do to prove this is to integrate the above equation, treating Ea as a constant).   With the above 
definition, we can determine Ea at a given temperature from the slope (at the temperature of 
interest) of a plot of lnk against T, even if the Arrhenius plot is not a straight line. 
 
There are a few observations that follow from Equation (19.2). 
 
 1. The higher the activation energy, the stronger the temperature dependence of the 
  rate constant. 
 
 2. A reaction with no temperature dependence has an activation energy of zero (this is 
  common in ion-molecule reactions and radical-radical recombinations) 
 
 3. A negative activation energy implies that the rate decreases as the temperature  
  increases, and always indicates a complex reaction mechanism.  An example of a 
  reaction with a negative activation energy was the oxidation of NO to form NO2,  
  which has the mechanism. 
 

     NO + NO 
k-1
¾
k1

 (NO)2  

 

     (NO)2 + O2 →
k2

 2NO2  
 
  At higher temperatures, the intermediate complex (NO)2 becomes more unstable  
  and has a shorter lifetime.  There is therefore less time for the O2 to react with it to 
  form the NO2 products, and the reaction rate therefore decreases.  Another way of 
  thinking about this is that formation of the complex is exothermic, and increasing the 
  temperature will therefore shift the pre-equilibrium to the left (by Le Chatelier’s  
  principle), again reducing the overall rate of reaction. 
 
Overall activation energies for complex reactions 
 
When dealing with complex reactions, the Arrhenius equation can often be used to estimate the 
overall activation energy from a knowledge of the activation energies of individual steps.  For 
example, in the above reaction, the overall rate law is 
 

    ν  =  
k1k2
k-1

 [NO]2[O2]  =  k [NO]2[O2]    (19.3) 

  
where k is the observed third order rate constant.  The temperature dependence of k is 
 
 

  k  =  
k1k2
k-1

  =  
A1exp⎝

⎛
⎠
⎞-Ea

(1)

RT  A2exp⎝
⎛

⎠
⎞-Ea

(2)

RT

A-1exp⎝
⎛

⎠
⎞-Ea

(-1)

RT
  =  

A1A2
A-1

 exp⎝
⎛

⎠
⎞-Ea

(1)-Ea
(2)+Ea

(-1)

RT    (19.4) 

 
We can therefore identify that for the overall reaction, 
 

    A  =  
A1A2
A-1

  and Ea  =  Ea
(1) + Ea

(2) – Ea
(-1)  (19.5) 
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Catalysis 
 
As well as quantifying the temperature dependence of a rate constant, the Arrhenius equation also 
provides a ‘mathematical’ explanation for the effect of a catalyst.  A catalyst works by reducing the 
activation energy for a reaction.  From the appearance of -Ea in the exponent of the Arrhenius 
equation, it is clear that this will have the effect of increasing the rate constant. 
 
 
20.  Simple collision theory 
 
As the name suggests, simple collision theory represents one of the most basic attempts to 
develop a theory capable of predicting the rate constant for an elementary bimolecular reaction of 
the form A + B → P.  We begin by considering the factors we might expect a reaction rate to 
depend upon.  Obviously, the rate of reaction must depend upon the rate of collisions between the 
reactants.  However, not every collision leads to reaction.  Some colliding pairs do not have 
enough energy to overcome the activation barrier, and any theory of reaction rates must take this 
energy requirement into account.  Also, it is highly likely that reaction will not even take place on 
every collision for which the energy requirement is met, since the reactants may need to collide in 
a particular orientation (e.g. SN2 reactions) or some of the energy may need to be present in a 
particular form (e.g. vibration in a bond coupled to the reaction coordinate).  In summary, there are 
three aspects to a successful reactive collision, and we might expect an expression for the rate of a 
bimolecular reaction to take the following form. 
 
  ν  = (encounter rate) (energy requirement) (steric requirement)  (20.1) 
 
We will now consider each of these factors in more detail. 
 
1.  Encounter rate 
We showed in the ‘Properties of gases’ lecture course that the rate of collisions between molecules 
A and B present at number densities nA and nB is 
 

    ZAB  =  σC ⎝
⎛

⎠
⎞8kT

πμ

1/2

nAnB  =  σC ⎝
⎛

⎠
⎞8kT

πμ

1/2

NA
2[A][B]   (20.2) 

2.  Energy requirement 
For a Maxwell-Boltzmann distribution of molecular speeds, the fraction of collisions for which the 
energy is high enough to overcome the activation barrier is exp(-Ea/RT). 
 
3.  Steric requirement 
Experimentally, measured rates are often found to be up to an order of magnitude smaller than 
those calculated from simple collision theory, suggesting that features such as the relative 
orientation of the colliding species is important in determining the reaction rate.  We account for the 
disagreement between experiment and theory by introducing a steric factor, P, into our expression 
for the reaction rate.  Alternatively, we can replace the collision cross section, σC, with a reaction 
cross section σR, where σR = PσC.  Usually, P is considerably less than unity, but values greater 
than one are also possible.  An example is the ‘harpoon reaction’ between Rb and Cl2.  The 
reaction mechanism involves an electron transfer at large separations to form Rb+ + Cl2-, after 
which the electrostatic attraction between the two ions guarantees reaction.  P is large because the 
reaction cross section is determined by the electron transfer distance, which is much larger than 
the collision diameter. 
  
Combining these three terms, the simple collision theory expression for the reaction rate is:  
 

     ν  =  P σC ⎝
⎛

⎠
⎞8kT

πμ

1/2

exp⎝
⎛

⎠
⎞-Ea

RT  nAnB   (20.3) 

 
and we can identify the second order rate constant as 
 



 31

     ν  =  P σC ⎝
⎛

⎠
⎞8kT

πμ

1/2

exp⎝
⎛

⎠
⎞-Ea

RT     (20.4) 

 
Simple collision theory provides a good first attempt at rationalising the Arrhenius temperature 
dependence seen for many reaction rate constants.  However, at a quantitative level the 
predictions of the theory are far from accurate.  There are a number of ways in which the model 
breaks down; 
 
(i)   It does not account for the fact that, unless the collision is head on, not all of the kinetic 
 energy of the two reactants is available for reaction.  Conservation of angular momentum 
 means that only the kinetic energy corresponding to the velocity component along the 
 relative velocity vector of the reactants actually contributes to the collision energy.   
 
(ii)   The energy stored in internal degrees of freedom in the reactants (vibrations, rotations etc) 
 has been ignored.  For reactions involving large molecules, this often leads to a large 
 discrepancy between simple collision theory and experiment, though this is partly corrected 
 for by the inclusion of the steric factor, P.  This problem is largely  solved in another theory 
 known as transition state theory, which you will learn about next year. 
 
 
 
 


