Kinetics problems

Question 1

- a) Explain the terms *order*, *overall order*, and *molecularity* as applied to the kinetics of a chemical reaction.
- b) Outline one method by which the order of a chemical reaction can be determined experimentally.
- c) The gas phase reaction of fluorine atoms with bromine follows the stoichiometric equation

$$F + Br_2 \rightarrow FBr + Br$$

The following concentrations of Br₂ were observed as a function of time at 298 K when the initial fluorine atom concentration was $[F] = 4x10^{-9} \text{ mol dm}^{-3}$.

time / ms	0	0.7	1.3	2.7	3.9
[Br ₂] / 10 ⁻⁹ mol dm ⁻³	0.100	0.066	0.048	0.022	0.011

- i) Show that the reaction is first order with respect to Br₂.
- ii) Given that the reaction is also first order with respect to F atoms, calculate the overall secondorder rate constant.

Question 2

a) Under what conditions can a reaction with rate law

$$\frac{d[P]}{dt} = \frac{k[A][B]^{1/2}}{1+k'[A]}$$

be said to have a definite classification by order and molecularity?

- b) Deduce the relation between the rate constant and the half-life of a species for a first-order reaction.
- c) The following data were obtained for the concentration of product in a reaction of the form $A \rightarrow P$:

t / s 10 20 40 60 80 ∞ [P] / mol L⁻¹ 0.90 1.13 1.29 1.35 1.39 1.50

Determine the (integer) order and rate constant of the reaction.

Question 3

- a) Explain what is meant by the *steady-state approximation* in chemical kinetics. Why is it useful, and under what conditions is it valid?
- b) The following mechanism has been proposed for the thermal decomposition of ozone:

$$\begin{array}{lll} O_3 \rightarrow O_2 + O & k_a \\ O_2 + O \rightarrow O_3 & k_a' \\ O_3 + O \rightarrow O_2 + O_2 & k_b \end{array}$$

i) Derive an expression for the rate of decomposition of O₃ in terms of the concentrations of O₃ and O₂ and of the three rate constants k_a, k_a' and k_b.

- ii) Discuss the conditions under which the overall reaction will exhibit kinetics that are a) first order with respect to O₃ and b) second order with respect to O₃.
- iii) Interpret the rate equation you have derived, and in particular explain the role of O₂.

Question 4

- a) Why does the rate of most chemical reactions increase when the temperature is raised?
- b) The rate constant for the decomposition of HI into H₂+I₂ shows the following temperature dependence:

k / dm ³ mol ⁻¹ s ⁻¹	3.13x10⁻ ⁶	7.90x10 ⁻⁵	3.20x10 ⁻³	0.10
T / K	550	625	700	830

Determine the activation energy for the reaction, and the pre-exponential factor A in the Arrhenius equation.

- c) What is the overall reaction order for the decomposition? What justification does information in the table above give for the form of the rate equation?
- d) The reaction between hydrogen and iodine to form hydrogen iodide is believed to proceed via a chain mechanism. Using this reaction as an example, explain the meanings of the terms *initiation*, *propagation* and *termination*.
- e) For the reaction between nitric oxide and oxygen, $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$, the rate law is

rate = $k[NO]^2[O_2]$

The rate of reaction is found to fall as the temperature is increased. Propose a mechanism for the reaction, and show how it explains both the rate law and the temperature dependence of the reaction.

Question 5

a) A possible ion-molecule reaction mechanism for synthesis of ammonia in interstellar gas clouds is shown below.

$N^{+} + H_2 \rightarrow NH^{+} + H$	k_1
$NH^{+} + H_2 \rightarrow NH_2^{+} + H$	k_2
$NH_2^+ + H_2 \rightarrow NH_3^+ + H$	k_3
$NH_3^+ + H_2 \rightarrow NH_4^+ + H$	k_4
$NH_4^+ + e^- \rightarrow NH_3 + H$	k_5
$NH_4^+ + e^- \rightarrow NH_2 + 2H$	k_6

Use the steady state approximation to derive equations for the concentrations of the intermediates NH^+ , NH_2^+ , NH_3^+ and NH_4^+ in terms of the reactant concentrations [N⁺], [H₂] and [e⁻]. Treat the electrons as you would any other reactant.

(b) Show that the overall rate of production of NH₃ is given by

$$\frac{d[NH_3]}{dt} = \frac{k_1k_5}{k_5+k_6} [N^+][H_2]$$

- (c) What is the origin of the *activation energy* in a chemical reaction?
- (d) The rates of many ion-molecule reactions show virtually no dependence on temperature.

- (i) What does this imply about their activation energy?
- (ii) What relevance does this have to reactions occurring in the interstellar medium?

Question 6

a) For the elementary gas phase reaction $H+C_2H_4 \rightarrow C_2H_5$, the second-order rate constant varies with temperature in the following way:

T/K	198	298	400	511	604
10 ¹² k/ (cm ³ molecule ⁻¹ s ⁻¹)	0.20	1.13	2.83	4.27	7.69

Use the data to calculate the activation energy, $\mathsf{E}_{\mathsf{a}},$ and the pre-exponential factor, A, for the reaction.

b) The simple collision theory of bimolecular reactions yields the following expression for the rate constant:

$$k = \left(\frac{8kT}{\pi \mu}\right)^{1/2} \sigma \exp(-E_a/RT)$$

where μ is the reduced mass of the reactants and σ is the reaction cross section.

- i) Interpret the role of the three factors in this expression.
- ii) Use the answer to part a) to estimate σ for the reaction at 400 K.
- iii) Compare the value obtained with an estimate of 4.0×10^{-19} m² for the collision cross section.

[Take the atomic masses of H and C to be 1.0 amu and 12 amu, respectively.]