
Molecular energy levels and spectroscopy 
 
1.  Translational energy levels 
 
The translational energy levels of a molecule are usually taken to be those of a particle in a three-
dimensional box: 
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In general, the separation of the translational energy levels is many orders of magnitude smaller than kT, 
even for a box with dimensions on the order of molecular sizes.  The translational behaviour of molecules 
therefore appears to be classical. 
 
 
2.  Rotational energy levels – diatomic molecules 
 
Diatomic molecules are often approximated as rigid rotors, meaning that the bond length is assumed to be 
fixed.  Solving the Schrodinger equation for a rigid rotor gives the following energy levels: 
 
     E(J) = B J(J+1) 
 
In this equation, J is the quantum number for total rotational angular momentum, and B is the rotational 

constant, which is related to the moment of inertia , I = r2 (is the reduced mass and r the bond length) of 
the molecule. 

     B = 
h
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B is usually given in units of cm1, and in order to end up with these units, the speed of light in this 

equation, c, needs to be in cm s1 rather than ms1.  Using B in cm1 will yield the energy in the same units.  
 

[Note: cm1 are common units in spectroscopy for historical reasons, even though they are non-SI.  Units of 

m1 are never used, so don’t be tempted to convert, however stupid it might seem...] 
 
The equation above for E(J) is only approximate.  In order to provide a better description of the energy 
levels of a diatomic molecule, a centrifugal distortion term is added to the energy.  This takes account of 
the fact that as a real molecule rotates faster and faster (i.e. with more energy), the bond stretches a little 
(if you swing a weight attached to a piece of elastic in a circle, you can observe the same effect on a 
macroscopic scale).     
    E(J) = B J(J+1) – DJ J2(J+1)2 
 
DJ is called the centrifigual distortion constant, and is several orders of magnitude smaller than B. 
 
Separations of rotational energy levels correspond to the microwave region of the electromagnetic 
spectrum.   In order for a molecule to absorb microwave radiation, it must have a permanent dipole 

moment.   i.e.   ≠ 0.  This condition is known as the gross selection rule for microwave, or pure rotational, 
spectroscopy.  Specific selection rules arise largely from conservation of angular momentum, and generally 
involve statements of the allowed changes in quantum number.  In general, the selection rule for changes 

in rotational angular momentum following absorption of a photon is J = 0,±1.  However, for pure 

rotational transitions (we will cover mixed rotation-vibration transitions later), J=0 does not correspond to 



a transition since the particle stays in the same state, so the specific selection rule for a pure rotation 

spectrum is J = ±1.   
 
The transition energies may be calculated from the energy equation above.  For a transition from a level J 
to a level J+1, we have: 
 

         E(J)  =  E(J+1) – E(J)  
    =  B(J+1)(J+2) – DJ(J+1)2(J+2)2 – B J(J+1) + DJJ2(J+1)2 

    =  B(J2 + 3J + 2 – J2 – J) + DJ(J+1)2[J2 – (J+2)2] 

    = 2B (J+1)  4DJ(J+1)3  
 
Neglecting the centrifugal distortion term, the spacing between lines in a spectrum will be 
 

   E(J+1) – E(J) = 2B(J+2) – 2B(J+1) = 2B 
 
i.e. lines in a pure rotational spectrum are (almost) equally spaced by 2B ("almost" because we have 
neglected the effects of centrifugal distortion).  This result is often useful if we are attempting to assign 
lines in a spectrum in terms of the quantum numbers of the states involved.  The separation between a pair 

of lines allows us to estimate B (i.e. B = separation/2), and we can use E(J) ≈2B(J+1) to determine the J 
values involved in a given transition.   
 
 
3.  Rotational energy levels – polyatomic molecules 
 
Polyatomic molecules may rotate about the x, y or z axes, or some combination of the three.  They have 
moments of inertia Ix, Iy, Iz associated with each axis, and also corresponding rotational constants A, B and C 

[A = h/(82cIx), B = h/(82cIy), C = h/(82cIz)].  The general equation for a moment of inertia is: 
 

      I = i mi ri
2 

 
where the sum is over the atoms in the molecule, mi is the mass of atom i and ri is its distance from the 
rotation axis. 
 
[Note: this explains why only two rotation axes are counted in a diatomic molecule.  Rotation about the 
principal axis would have I=0, since all the atoms lie along the axis, and since the kinetic energy associated 

with rotation is K = ½ I2, with  the angular frequency of rotation, there would be no energy associated 
with such a rotation (and therefore no energy levels and no transitions between energy levels).] 
 
In general, the rotational constants A, B, and C may all be different, and a molecule for which this is true is 
called an asymmetric top.  The spectroscopy of such molecules is quite complicated, and beyond the scope 
of the course.  Instead, we will look at symmetric top molecules, such as CH3F, CH3Cl, CCl3H or benzene, for 
which two of the rotational constants are equal. 
 
Symmetric tops may be divided into prolate tops, for which B > A,C (e.g. CH3F, CH3Cl) and oblate tops, for 
which B < A,C (e.g. CCl3H, benzene).   The rotational motion of a symmetric top molecule is described by 
three quantum numbers: 
 
 J – the total angular momentum 
 K – the projection of J onto the principal axis of the molecule 
 MJ – the projection of J onto some chosen lab-frame z axis (often just written M) 
 



 Regardless of which category the molecule falls into, the rotational energy is given approximately by: 
 

     E(J,K) = B J(J+1) + (AB)K2 
 
When centrifugal distortion is included, this becomes 
 

   E(J,K) = B J(J+1) + (AB)K2  DJ J2(J+1)2 – DJK J(J+1)K2 – DKK4 
 

The selection rules for a symmetric top molecule are J = ±1, K = 0. 
 
Transition energies and line separations may be calculated in a similar way to that worked through above 
for diatomic molecules, by determining E(J+1,K) – E(J,K) etc. 
 
 
4.  Vibrational energy levels 
 
To a first approximation, molecular vibrations can be approximated as simple harmonic oscillators, with an 
associated energy 

     E(v) = (v + ½)h 
 

where v is the vibrational quantum number and  is the vibrational frequency (the symbols look quite 
similar – don't confuse them!).  In the above expression, E(v) is in units of Joules.  Usually, the energies are 

given in cm1, in which case h is replaced by e, the vibrational wavenumber (i.e. this is simply the 

harmonic vibrational frequency or energy expressed in units of cm1).   
 

     E(v) = (v + ½) e 
 
This is usually a fairly good approximation near the bottom of the potential well, where the potential 
closely resembles that of a harmonic oscillator.  However, real molecules have anharmonic potentials, and 
this is taken into account by rewriting the energy as a series expansion, with successively higher order 
correction terms: 

    E(v) = (v + ½)e – (v+ ½)2 xee + (v+ ½)3yee + ... 
 

Often, only the first correction term, involving xee, will be used, but note that the source of differences in 
calculated and measured properties involving vibrational energy levels is frequently neglect of higher order 
terms.  Note that every vibration has a zero point energy found by substituting v=0 into the above 

equation,  ZPE = E(0) = ½e – ¼xee 

 
As well as changing the energy of the vibrational levels, anharmonicity has another, less obvious effect: for 
a molecule with an anharmonic potential, the rotational constant changes slightly with vibrational state.  
The rotational constant Bv for a given vibrational state can be described by the expression: 
 

    Bv = Be + e(v + ½) 
 

where Be is the rotational constant corresponding to the equilibrium geometry of the molecule, e is a 
constant determined by the shape of the anharmonic potential, and v is the vibrational quantum number.   
 
Returning now to considering the vibrational energy levels of a harmonic and an anharmonic oscillator, 

recall that the energy levels in a harmonic oscillator are equally spaced by an energy e.  The effect of 
anharmonicity is that the levels get increasingly closer together as the vibrational quantum number v 
increases, until eventually there is no difference in energy between successive quantum states, and the 



energy levels form a continuum.  The energy at which this occurs (known as the dissociation energy) 
coincides with the point at which the potential energy function reaches zero and the molecule is no longer 
bound (this is the reason why the energy levels are no longer quantized).  The dissociation energy may be 
measured either from the bottom of the potential, in which case it is called De, or from the zero point 
energy, in which case it is called D0. 
 

To determine the dissociation energy, we set 
dE
dv equal to zero to determine the maximum value of the 

vibrational quantum number v. 
  

   
dE
dv  =  0  =  e  2(vmax+½)xee          (vmax+½)  =  
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Substituting back into the energy expression above gives 
 

               De  =  E(vmax) = 
e

2

4xee
  

  
De and D0 are related by 
     D0 = De – E(0)      
 
 
5.  Rovibrational spectroscopy 
 
Ignoring electronic excitation, the total internal energy of a molecule is the sum of its vibrational and 
rotational energy. 

   E(v,J) = (v+½)e – (v+½)2xee + Bv J(J+1) – DJ J2(J+1)2 

 

Transitions between the E(v,J) levels in which v changes correspond to absorption of energy in the infrared 

region of the spectrum.  The gross selection rule for a vibrational transition is d/dt ≠ 0.  i.e. the molecule 
must have a dipole moment that changes during the course of the vibration (important note: this 
requirement may be satisfied without the molecule having a permanent dipole).   If the vibrations are 

approximated as simple harmonic oscillators, the specific selection rule is v = ±1.  Since real vibrations are 

anharmonic, in reality there are contributions from v = ±2, v = ±3, etc, particularly for transitions 
originating in highly anharmonic regions of the potential.   A change in vibrational quantum number v is 

often accompanied by a change in rotational quantum number J, according to the selection rule J = 0, ±1, 
so we talk about rovibrational (or vibrotational) transitions, rather than simply vibrational transitions.  In a 

linear molecule, J = 0 is only allowed if there is an angular momentum perpendicular to the axis.  This 
could arise from a bending vibration or from the electronic angular momentum of an unpaired electron 
(e.g. OH, NO).   A transition between two vibrational states gives rise to a vibrational band, made up of P, Q 

and R branches, corresponding to transitions between rotational states with J = 1,  0 (if allowed) and 1.  
 
5.  Populations of energy levels and spectral line intensities – the Boltzmann distribution 
 
The intensities of lines in a spectrum depend upon a linestrength factor related to the overlap between the 
wavefunctions of the two states, the light intensity, and the population of the lower state.  Within a given 
rotational or vibrational spectrum, the lower state populations are usually the dominant factor.  Under 
thermal conditions, these are given by the Boltzmann distribution. 
 

     
ni

n0
  =  gi exp(Ei/kT) , 



 
where gi is the degeneracy and Ei the energy (relative to the ground state) of state i.  As a consequence, we 
can predict the most intense peak in a rotational or rovibrational spectrum by maximising the Boltzmann 
distribution to find the most highly populated rotational state at a given temperature.  For rotational lines, 
the above equation becomes 

     
nJ

n0
 = (2J+1) exp[BJ(J+1)/kT]  

 

Setting the first derivative equal to zero and solving for Jmax gives Jmax = 
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