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 1. Introduction - phases of matter 
 
There are four major phases of matter: solids, liquids, gases and plasmas.   Starting from a solid at 
a temperature below its melting point, we can move through these phases by increasing the 
temperature.  First, we overcome the bonds or intermolecular forces locking the atoms into the 
solid structure, and the solid melts.  At higher temperatures we overcome virtually all of the 
intermolecular forces and the liquid vapourises to form a gas (depending on the ambient pressure 
and on the phase diagram of the substance, it is sometimes possible to go directly from the solid to 
the gas phase in a process known as sublimation).  If we increase the temperature to extremely 
high levels, there is enough energy t:o ionise the substance and we form a plasma.  This course is 
concerned solely with the properties and behaviour of gases.  As we shall see, the fact that 
interactions between gas phase particles are only very weak allows us to use relatively simple 
models to gain virtually a complete understanding of the gas phase. 
 
 
2. Characteristics of the gas phase 
 
The gas phase of a substance has the following properties: 
 
1.    A gas is a collection of particles in constant, rapid, random motion 
 (sometimes referred to as ‘Brownian’ motion).  The particles in a 
 gas are constantly undergoing collisions with each  other and with 
 the walls of the container, which change their direction − hence the 
 ‘random’.  If we followed the trajectory of a single particle within a 
 gas, it might look something like the figure on the right. 
 
2. A gas fills any container it occupies.  This is a result of the second law of  thermodynamics 
 i.e. gas expanding to fill a container is a spontaneous process due to the accompanying 
 increase in entropy. 
 
3.   The effects of intermolecular forces in a gas are generally fairly small.  For many  gases 
 over a fairly wide range of temperatures and pressures, it is a reasonable  approximation to 
 ignore them entirely.  This is the basis of the ‘ideal gas’ approximation, of which more later. 
 
4.   The physical state of a pure gas (as opposed to a mixture) may be defined by four 
 physical properties: 
 
   p – the pressure of the gas 
   T – the temperature of the gas 
   V – the volume of the gas 
   n – the number of moles of substance present 
 
 In fact, if we know any three of these variables, we can use an equation of state for 
 the gas to determine the fourth.  Despite the rather grand name, an equation of state is 
 simply an expression that relates these four variables.  In Sections 4 and 5, we will consider 
 the equation of state for an ideal gas (one in which the intermolecular forces are assumed 
 to be zero), and we will also look briefly at some models used to describe real (i.e. 
 interacting) gases. 
  
Examples  
 
Elements that are gases at room temperature and atmospheric pressure are He, Ne, Ar, Kr, Xe, Rn 
(atomic gases) and H2, O2, N2, F2, Cl2 (diatomic gases).  Other substances that we commonly think 
of as gases include CO, NO, HCl, O3, HCN, H2S, CO2, N2O, NO2, SO2, NH3, PH3, BF3, SF6, CH4, 
C2H6, C3H8, C4H10, CF2Cl2.  While these substances are all gases at room temperature and 
pressure, virtually every compound has a gas phase that may be accessed under the appropriate 
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conditions of temperature and pressure.  These conditions may be identified from the phase 
diagram for the substance. 
 
Gases and vapours 
 
The difference between a ‘gas’ and a ‘vapour’ is sometimes a source of confusion.   When a gas 
phase of a substance is present under conditions when the substance would normally be a solid or 
liquid (e.g. below the boiling point of the substance) then we call this a vapour phase.  This is in 
contrast to a ‘fixed gas’, which is a gas for which no liquid or solid phase can exist at the 
temperature of interest (e.g. gases such as N2, O2 or He at room temperature). 
 
As an example, at the surface of a liquid there always exists an equilibrium between the liquid and 
gas phases.  At a temperature below the boiling point of the substance, the gas is in fact 
technically a vapour, and its pressure is known as the ‘vapour pressure’ of the substance at that 
temperature.  As the temperature is increased, the vapour pressure also increases.  The 
temperature at which the vapour pressure of the substance is equal to the ambient pressure is the 
boiling point of the substance. 
 
 
3. Measurable properties of gases 
 
What we mean when we talk about the amount of gas present (usually expressed in moles) or the 
volume it occupies is fairly clear.  However, the concepts of pressure and temperature deserve a 
little more discussion. 
 
Pressure 
 
Pressure is a measure of the force exerted by a gas per unit area.  Correspondingly, it has SI units 
of Newtons per square metre (Nm-2), more commonly referred to as Pascals (Pa).  Several other 
units of pressure are in common usage, and conversions between these units and Pascals are 
given below: 
    1 Torr = 1 mmHg = 133.3 Pa 
    1 bar = 1000 mBar = 100 000 Pa       
 
In a gas, the force arises from collisions of the atoms or molecules in the gas with the surface at 
which the pressure is being measured, often the walls of the container (more on this in Section 7).  
Note that because the motion of the gas particles is completely random, we could place a surface 
at any position in a gas and at any orientation, and we would measure the same pressure.   
 
The fact that the measured pressure arises from collisions of individual gas particles with the 
container walls leads us directly to an important result about mixed gases, namely that the total 
pressure p exerted by a mixture of gases is simply the sum of the partial pressures pi of the 
component gases (the partial pressure pi is simply the pressure that gas i would exert if it alone 
occupied the container).  This result is known as Dalton’s law. 
 
     p = Σi pi   Dalton’s law  (3.1) 
 
 
Measurement of pressure 
 
Pressure measurement presents a challenge in that there is no single physical effect that can be 
used over the entire range from extremely low to extremely high pressure.  As we shall see, many 
ingenious methods have been devised for measuring pressure.  At pressures higher than about 
10−4 mbar, gauges based on mechanical phenomena may be used.  These work by measuring the 
actual force exerted by the gas in a variety of ways, and provide an absolute measurement in that 
the determined pressure is independent of the gas species.  At lower pressures, gauges tend to 
rely on measuring a particular physical property of the gas, and for this reason must generally be 
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calibrated to give correct measurements for the gas of interest.  In this category, transport 
phenomena gauges measure gaseous drag on a moving body or exploit the thermal conductivity of 
the gas, while ionization gauges ionize the gas and measure the total ion current generated.  The 
operating principles of some of the most common types of pressure gauge are outlined below. 
 
1.   U-tube manometer 
 Range: 1 mbar to atmospheric pressure 
 Type: mechanical 
 This gauge consists of a U tube filled with mercury, silicon oil or some other non-volatile 
 liquid. One end of the tube provides a reference pressure pref, and is either open to 
 atmospheric pressure or sealed and evacuated to very low pressure.   The other end of the 
 U-tube is exposed to the system pressure to be measured, psys.  The gas at each end of the 
 tube applies a force to the liquid column through collisions with the liquid surface.  If the 
 pressures at each end of the tube are unequal then these forces are unbalanced, and the 
 liquid will move along the tube until the forces are balanced.  At the equilibrium point, the 
 liquid in its new position exerts a force per unit area p = ρg∆h, where ρ is the density of the 
 liquid, g is the  acceleration due to gravity, and ∆h is the height difference between the two 
 arms of the U- tube.   Since this quantity must be equal to the original pressure differential 
 between the two arms of the U-tube, the system pressure is therefore psys = pref + ρg∆h. 
  

       
 
 
2.   Bourdon gauge 
 Range: 1 mbar – high pressure (at least tens of bar) 
 Type: mechanical 
 A Bourdon gauge works on essentially the same principle as a party blower.  As shown in 
 the diagram below, the gauge head contains a ‘C’ shaped fine-walled hollow metal tube 
 (called a Bourdon tube).  When pressurised, the cross section of the tube changes and the 
 tube flexes and attempts to straighten.  The tube is connected by a gearing system that 
 transforms the flexion of the tube into rotation of a pointer, which indicates the pressure on 
 a scale. 
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3. Capacitance manometer 
 Range: 10-6 – 105 mbar 
 Type: mechanical 
  A capacitance manometer (also known as a baratron) 
 contains a thin metal diaphragm that is deflected when the 
 pressure changes.  The deflection is sensed electronically 
 via a change in capacitance between the diaphragm and one 
 or more fixed electrodes.  One side  of the diaphragm is 
 maintained at a reference pressure, and the measured 
 capacitance  therefore allows an absolute pressure to be 
 determined. The above diagram and some of those following 
 were taken from http://www.lesker.com/newweb/Gauges/ 
 gauges_technicalnotes_1.cfm.   
 
4.   Pirani gauge 
 Range: 1000 – 10-4 mbar 
 Type: transport 
 A Pirani gauge contains a metal wire that is heated by an electrical current.  At the same 
 time, collisions with the surrounding gas carry heat away from the wire and cool it, with the 
 net effect being that the wire temperature settles at some equilibrium value.  If the 
 pressure is lowered, heat is carried away less effectively and the temperature of the wire 
 increases, while an increase in pressure leads to more effective cooling and a decrease in 
 the wire temperature.  The temperature of the wire may therefore be used to measure the 
 pressure.  In practice this is achieved by monitoring the electrical resistance of the wire, 
 which is temperature-dependent.  
 
5.     Thermocouple gauge 
 Range: 1000-10-4 mbar 
 Type: transport 
 Thermocouple gauges work in a very similar way to Pirani 
 gauges, except that a thermocouple is used to measure 
 the temperature of the wire directly, rather than inferring 
 the temperature from a measurement of the resistance. 
 
6. Hot cathode ionization gauge (Bayard-Alpert gauge) 
 Range: 10-3 – 10-10 mbar 
 Type: ionization 
 A hot cathode gauge consists of a heated filament that emits 
 electrons, an acceleration grid, and a thin wire detector.  
 Electrons emitted from the filament are accelerated towards the 
 grid, and ionise gas molecules along the way.  The ions are 
 collected at the detection wire, and the measured ion current is 
 proportional to the gas pressure.  This type of ionization gauge 
 has the advantage that there is a linear dependence of the ion 
 current on the gas pressure.  Like any ionization gauge, 
 correction factors need to be applied for different gases to 
 account for differences in electron-impact ionization probability. 
 
 
7. Cold cathode ionization gauge (Penning gauge)  
 Range: 10-2 – 10-7 mbar 
 Type: ionization 
 A cold cathode gauge (see figure on right) works on a similar 
 principle to a hot cathode gauge, but the mechanism of 
 ionization is somewhat different.  There is no filament to 
 produce electrons, simply a detection rod (the anode) and a 
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 cylindrical cathode, to which a high voltage (~4kV) is applied.  Ionization is initiated 
 randomly by a cosmic ray or some other ionizing particle entering the gauge head (this 
 occurs more frequently than you might think!).  The electrons formed are accelerated 
 towards the anode.  A magnetic field causes them to follow spiral trajectories, increasing 
 the path length through the gas, and therefore the chance of ionizing collisions.  The ions 
 are accelerated towards the cathode, where they are detected.  More free electrons are 
 emitted as the ions bombard the cathode, further increasing the signal.  Eventually a steady 
 state is reached, with the ion current  being related to the background gas pressure.  The 
 relationship is not a linear one as in the case of a hot cathode gauge, and the pressure 
 reading is only accurate to within around a factor of two.  However, in its favour, the 
 Penning gauge is more damage resistant than a hot cathode gauge. 
 
 
Temperature 
 
The temperature of a gas is a measure of the amount of kinetic energy the gas particles possess, 
and therefore reflects their velocity distribution.  If we followed the velocity of any single particle 
within a gas, we would see it changing rapidly due to collisions with other particles and with the 
walls of the container.  However, since energy is conserved, these collisions only lead to exchange 
of energy between the particles, and the total number of particles with a given velocity remains 
constant i.e. at a given temperature, the velocity distribution of the gas particles is conserved. 
 
Note that temperature is a direct result of the motion of atoms and molecules.  In a solid this 
motion is almost exclusively vibrational; in a gas it is predominantly translational.  Whatever the 
type of motion, an important consequence is that the concept of temperature only has any meaning 
in the presence of matter.  It is impossible to define the temperature of a perfect vacuum, for 
example.  In addition, temperature is only really a meaningful concept for systems at thermal 
equilibrium.  The distribution of molecular speeds f(v) in an ideal gas at thermal equlibrium is given 
by the following expression, known as the Maxwell-Boltzmann distribution (this will be derived in 
Section 6). 
 

   f(v) = 4π ⎝
⎛

⎠
⎞m

2πkBT
3/2

 v2 exp⎝
⎛

⎠
⎞-mv2

2kBT       Maxwell-Boltzmann distribution     (3.2) 

 
 
The distribution depends on the ratio m/T, where m is the mass of the gas particle and T is the 
temperature.  The plots below show the Maxwell Boltzmann speed distributions for a number of 
different gases at two different temperatures. 
 
 

  
 
As we can see, average molecular speeds for common gases at room temperature (300 K) are 
generally a few hundred metres per second.  For example, N2 has an average speed of around 
500 ms-1, rising to around 850 ms-1 at 1000 K.  A light molecule such as H2 has a much higher 
mean speed of around 1800 ms-1at room temperature. 
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 We can make two observations: 
 
1.   Increasing the temperature broadens the distribution and shifts the peak to higher 
 velocities.  This means that there are more ‘fast’ particles at higher temperatures, 
 but there will still be many ‘slow’ ones as well. 
 
2.   Decreasing the mass of the gas particles has the same effect as increasing the 
 temperature i.e. heavier particles have a slower, narrower distribution of speeds  than 
 lighter particles. 
 
A good java applet demonstration of these ideas may be found on the chemistry website for 
Oklahoma State University: http://intro.chem.okstate.edu/1314F00/Laboratory/GLP.htm 
 
We will consider some further consequences of the Maxwell-Boltzmann distribution when we look 
at collisions in the next lecture.  Now we will consider the measurement of temperature. 
 
Based on our current definition, one way to measure the temperature of a gas would be to 
measure the velocities of each particle and then to find the appropriate value of T in the above 
expression to match the measured distribution.  This is clearly impractical, due both to the 
extremely high speeds of the gas particles and the difficulties associated with tracking any given 
particle amongst a sea of identical particles.  Instead, temperature measurements generally rely on 
the process of thermal equilibration. 
 
 
Thermal equilibrium and temperature measurements 
 
If two objects at different temperatures are placed in contact, heat will flow from the hotter object to 
the cooler object until their temperatures equalise.  When the two temperatures are equal, we say 
the objects are in thermal equilibrium.  The concept of thermal equilibrium provides the basis for 
the ‘zeroth law’ of thermodynamics. 
 
 If A is in thermal equilibrium with B and B is in thermal equilibrium with C, then  
 A is also in thermal equilibrium with C. 
 
This provides the basis for a rather formal definition of temperature as being ‘that property which is 
shared by objects in thermal equilibrium with each other’.  The zeroth law may seem very obvious, 
but it is an important principle when it comes to measuring the temperature of a system.  In 
general, it usually won’t be practical to place two arbitrary systems in thermal contact to find out if 
they are in thermal equilibrium and therefore have the same temperature.  However, the zeroth law 
means that we can use the properties of some reference system to establish a temperature scale, 
calibrate a measuring device to this reference system, and then use the device to measure the 
temperature of other systems.  An example of such a device is a mercury thermometer.  The 
reference system is a fixed quantity of mercury, and the physical property used to establish the 
temperature scale is the volume occupied by the mercury as a function of temperature.  To make a 
temperature measurement, the mercury is allowed to come into thermal equlibrium with the system 
we are making the measurement on, and the volume occupied by the mercury once equlibrium has 
been established may be converted to a temperature on our previously-established scale. 
 
Standard mercury or alcohol thermometers therefore rely on the physical property of thermal 
expansion of a fluid for temperature measurement.  However, many other properties may also be 
used to measure temperature.  Some of these include: 
 
Electrical resistance – the resistance of an electrical conductor or semiconductor changes with 
temperature.  Devices based on metallic conductors are usually known as ‘resistance temperature 
devices’, or RTDs, and rely on the more-or-less linear rise in resistance of a metal with increasing 
temperature.  A second type of device is the thermistor, which is based on changes in resistance in 
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a ceramic semiconductor.   Unlike metallic conductors, the resistance of these devices drops non-
linearly as the temperature is increased. 
 
Thermoelectric effect – When a metal is subjected to a thermal gradient, a potential difference is 
generated.  This effect is known as the thermoelectric (or Seebeck) effect, and forms the basis for 
a widely used class of temperature measurement devices known as thermocouples.    
 
Infrared emission – all substances emit black body radiation with a wavelength or frequency 
distribution that reflects their temperature.  Infrared temperature measurement devices measure 
emission in the IR region of the spectrum in order to infer the temperature of a substance or object. 
 
Thermal expansion of solids – bimetallic temperature measurement devices consist of two strips of 
different metals, bonded together.  The different thermal expansion coefficients of the metals mean 
that one side of the bonded strip will expand more than the other on heating, causing the strip to 
bend.  The degree of bending provides a measure of the temperature. 
 
Changes of state – thermometers based on materials that undergo a change of state with 
temperature are becoming increasingly widespread. For example, liquid crystal thermometers 
undergo a reversible colour change with changes in temperature.  Other materials undergo 
irreversible changes, which may be useful in situations where all we need to know is whether a 
certain temperature has been exceeded (e.g. packaging of temperature sensitive goods). 
 
 
4.  Experimental observations – the gas laws 
 
Now that we have considered the physical properties of a gas 
in some detail, we will move on to investigating relationships 
between them.  The figure on the right illustrates the 
observed relationship between the volume and pressure of a 
gas at two different temperatures. 
 
The relationship between pressure and volume 
 
Initially, we will focus on just one of the curves in order to look 
at the relationship between pressure and volume.  We see 
that as we increase the pressure from low values, the volume first drops precipitously, and then at 
a much slower rate, before more or less leveling out to a constant value.  In fact, we find that 
pressure is inversely proportional to volume, and the curves follow the equation 
 
     pV = constant   Boyle’s law  (4.1) 
 
This relationship, known as Boyle’s law, suggests that it becomes increasingly more difficult to 
compress a gas as we move to higher pressures.  It is fairly straightforward to explain this 
observation using our understanding of the molecular basis of pressure.  Consider the 
experimental setup shown in the figure below, in which a gas is compressed by depressing a 

plunger that forms the ‘lid’ of the container when the 
plunger is at its highest position (left hand side of the 
figure), the volume occupied by the gas is large and the 
pressure is low.  The low pressure means that there are 
relatively few collisions of the gas with the inside surface 
of the plunger, and the force opposing depression of the 
plunger is correspondingly low.  Under these conditions it 
is therefore very easy to compress the gas.  Once the 
plunger has already been depressed some way (right 
hand figure), the gas occupies a much smaller volume, 
and there are many more collisions with the inside 
surface of the plunger (i.e. a higher pressure).  These 
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collisions provide a large force opposing further depression of the plunger, and it becomes much 
more difficult to reduce the volume of the gas. 
 
The effect of temperature on pressure and volume 
 
From the plot above, we see that for a fixed volume, the pressure increases with temperature.  In 
fact, this is a direct proportionality: 
 
     P ∝ T    (at constant volume)    (4.2) 
 
Similarly, we find that at a fixed pressure, the volume is linearly dependent on temperature. 
  
     V ∝ T   (at constant pressure)   (4.3) 
 
This second relationship is known as Charles’s law (or sometimes Gay-Lussac’s law).  It is often 
written in the slightly different (but equivalent) form 
 

     
V1
T1

 = 
V2
T2

    Charles’ law  (4.4) 

 
The first two equations above may be combined to give the result 
 
     pV ∝ T       (4.5) 
 
These observations are again very straightforward to explain using our molecular understanding of 
gases.  The primary effect of increasing the temperature of the gas is to increase the speeds of the 
particles.  As a result, there will be more collisions with the walls of the container (or the inside 
surface of the plunger in our example above), and the collisions will also be of higher energy.  For 
a fixed volume of gas, these factors combine to give an increase in pressure.  On the other hand, if 
the experiment is to be carried out at constant pressure, we require that the total force exerted 
upwards on the plunger through collisions remains constant.  Since the individual collisions are 
more energetic at higher temperatures, this may only be achieved by reducing the number of 
collisions, which requires a reduction in the density of the gas and therefore an increase in its 
volume.  
 
The effect of the amount of gas, n 
 
It follows fairly intuitively from the arguments above that both pressure and volume will also be 
proportional to the number of gas molecules in the sample.  i.e. 
 
     pV ∝ n       (4.6) 
 
This is known as Avogadro’s principle. 
 
 
Equation of state for an ideal gas 
 
We can combine all of the above results into a single expression, which turns out to be the 
equation of state for an ideal gas (and an approximate equation of state for real gases). 
 
     pV = nRT   Ideal gas law  (4.7) 
 
The constant of proportionality, R, is called the gas constant, and takes the value 8.314 J K-1 mol-1. 
 Note that R is related to Boltzmann’s constant, kB, by R = NAkB, where NA is Avogadro’s number. 
 
This equation generally provides a good description of gases at relatively low pressures and 
moderate to high temperatures, which are the conditions under which the original experiments 
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described above were carried out.  To understand the reasons for this, and also the reasons that 
the equation breaks down at high pressures and low temperatures, we need to consider the 
differences between an ‘ideal’ gas and a real gas. 
 
5.  Ideal gases and real gases 
 
The ideal gas model 
 
The ideal gas model is an approximate model of gases that is often used to simplify calculations on 
real gases.  An ideal gas has the following properties: 
 
1.   There are no intermolecular forces between the gas particles. 
 
2.    The volume occupied by the particles is negligible compared to the volume of the container 
 they occupy. 
 
3.   The only interactions between the particles and with the container walls are perfectly elastic 
 collisions. 
 
Note that an elastic collision is one in which the total kinetic energy is conserved (i.e. no energy is 
transferred from translation into rotation or vibration, and no chemical reaction occurs).  Of course, 
in a real gas, the atoms or molecules have a finite size, and at close range they interact with each 
other through a variety of intermolecular forces, including dipole-dipole interactions, dipole-induced 
dipole interactions, and van der Waal’s (induced dipole – induced dipole) interactions.  When 
applied to real gases, the ideal gas model breaks down when molecular size effects or 
intermolecular forces become important.  This occurs under conditions of high pressure, when the 
molecules are forced close together and therefore interact strongly, and at low temperatures, when 
the molecules are moving slowly and intermolecular forces have a long time to act during a 
collision.  The pressure at which the ideal gas model starts to break down will depend on the 
nature and strength of the intermolecular forces between the gas particles, and therefore on their 
identity.  The ideal gas model becomes more and more exact as the pressure is lowered, since at 
very low pressures the gas particles are widely spaced apart and interact very little with each other. 
 
The compression factor 
 
The deviations of a real gas from ideal gas behaviour may be quantified by a parameter called the 
compression factor, usually given the symbol Z.  At a given pressure and temperature, attractive 
and repulsive intermolecular forces between gas particles mean that the molar volume is likely to 
be smaller or larger than for an ideal gas under the same conditions.  The compression factor is 
simply the ratio of the molar volume Vm of the gas to the molar volume Vm

o
 of an ideal gas at the 

same pressure and temperature.  

      Z = 
Vm

Vm
o  

 
The value of Z provides information on the dominant types of intermolecular forces acting in a gas. 
 
 Z = 1   No intermolecular forces, ideal gas  behaviour 
 Z < 1 Attractive forces dominate, gas occupies a smaller volume than an ideal gas. 
 Z > 1 Repulsive forces dominate, gas occupies a larger volume than an ideal gas. 
 
All gases approach Z=1 at very low pressures, when the spacing between particles is large on 
average.  To understand the behaviour at higher pressures we need to consider a typical 
intermolecular potential, V(r), (see figure below) which describes the energy of interaction between 
two molecules as a function of their separation.   We can divide the potential into three regions or 
zones, as illustrated in the diagram, and consider the value of Z in each region. 
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Region I – large separations 
At large separations the interaction potential is 
effectively zero and Z = 1.  When the molecules are 
widely separated we therefore expect the gas to 
behave ideally, and this is indeed the case, with Z 
tending towards unity for all gases at sufficiently low 
pressures. 
 
Region II – small separations 
As the molecules approach each other, they 
experience an attractive interaction (i.e. the  system 
is able to decrease its energy by the molecules 
moving closer together).  This draws the molecules 
in the gas closer together than they would be in an 
ideal gas, reducing the molar volume such that Z < 1.  
  
Region III – very small separations 
At very small separations, the electron clouds on the molecules start to overlap, giving rise to a 
strong repulsive force (bringing the molecules closer together now increases their potential 
energy).  Because they are repelling each other, the molecules now take up a larger volume than 
they would in an ideal gas, and Z > 1. 
 
The behaviour of Z with pressure for a few common gases at a temperature of 273 K (0 °C) is 
illustrated below. 

The compression factor also depends on 
temperature.  The reasons for this are twofold, but 
both stem from the increased speed of the 
molecules.  Firstly, at higher speeds there is less 
time during a collision for the attractive part of the 
potential to act and the effect of the attractive 
intermolecular forces is therefore smaller (see left 
panel on diagram below).  Secondly, the higher 
energy of the collisions means that the particles 
penetrate further into the repulsive part of the 
potential during each collision, so the repulsive 
interactions become more dominant (see centre 
panel below).  The temperature of the gas therefore 
changes the balance between the contributions of 
attractive and repulsive interactions to the 

compression factor.  The resulting pressure-dependent compression factor for N2 at three different 
temperatures is shown below on the right. 
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Finally, we should consider the rate of change of Z with pressure.  An ideal gas has Z = 1 and 
dZ/dp = 0 (i.e. the slope of a plot of Z against p is zero) at all pressures.  For all real gases, Z tends 
towards unity at low pressures.  However, dZ/dp only tends towards zero in this pressure range at 
a single temperature called the Boyle temperature, TB.  At the Boyle temperature, the attractive 
and repulsive interactions exactly balance each other and the real gas behaves ideally over a 
certain range of pressures.  
 
 
Equations of state for real (non-ideal) gases 
 
There are a number of ways in which the ideal gas equation (Equation 1.6.8) may be modified to 
take account of the intermolecular forces present in a real gas.  One way is to treat the ideal gas 
law as the first term in an expansion of the form: 
 
     pV = RT (1 + B’p + C’p2 + ...)    (5.1) 
 
This is known as a virial expansion, or sometimes as the virial equation of state, and the 
coefficients B’, C’ etc are called virial coefficients.  Often, a more convenient form for the virial 
expansion is: 

     pV = RT ⎝
⎛

⎠
⎞1 + BV + C

V 2 + ...      (5.2) 

 
In many applications, only the first correction term (the term with coefficient B or B’) is included.  
Note that the Boyle temperature mentioned above is the temperature at which the first virial 
coefficient B = 0. 
 
Another widely used equation for treating real gases is the van der Waal’s equation. 
 

     p = nRT
V - nb  - a ⎝

⎛
⎠
⎞n

V
2
      (5.3) 

 
where a and b are temperature-independent constants called the van der Waal’s coefficients.  
Each gas has its own characteristic van der Waal’s coefficients.  This equation is often expressed 
in terms of molar volumes Vm. 

     p = RT
Vm - b  - a

Vm
2      (5.4) 

 
 
6.  The kinetic theory of gases 
 
Now that most of the basic concepts underlying the properties of gases have been covered, we are 
ready to move on to a more quantitative description.  The ideal gas model, which represents a 
simplified approximate version of a real gas, has already been introduced.  We will find in the 
following sections that we can use this model as the basis for the kinetic theory of gases.   The 
name comes from the fact that within kinetic theory, it is assumed that the only contributions to the 
energy of a gas arise from the kinetic energies of the gas particles (this is implicit in the 
assumptions of the ideal gas model listed at the start of Section 5). 
 
Kinetic theory is a powerful model that allows us to relate macroscopic measurable quantities to 
motions on the molecular scale.  In the following sections, we will use it to calculate ‘microscopic’ 
quantities such as average particle velocities, collision rates and the distance travelled between 
collisions, and to investigate macroscopic properties such as pressure and transport phenomena 
(e.g. diffusion rates and thermal conductivity). 
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7.  Collisions with the container walls - determining pressure from molecular speeds 
 
As described in Section 3, the measured pressure of a gas arises from collisions of the gas 
particles with the walls of the container.  By considering these collisions more carefully, we can use 
kinetic theory to relate the pressure directly to the average speed of the gas particles.  Firstly, we 
will determine the momentum transferred to the container walls in a single collision.  The figure 
below shows a particle of mass m and velocity v colliding with a wall of area A.  Before the 
collision, the particle has velocity vx and momentum mvx along the x direction.   After the collision, 
the particle has momentum -mvx along the x direction (note that the components of momentum 
along y and z remain unchanged).  Since momentum must be conserved during the collision, and 
the momentum of the particle has changed by 2mvx, the total momentum 
imparted to the wall must also be 2mvx.  
 
The next step is to determine the total number of collisions with the wall in 
a given time interval ∆t.  During this time interval, all particles within a 
distance d = vx∆t of the wall (and travelling towards it) will collide with the 
wall.  Since the area of the wall is A, this means that all particles within a 
volume Avx∆t will undergo a collision.  We now need to work out how 
many particles will be within this volume and travelling towards the wall.  
The number density of the molecules (i.e the number of molecules per unit 
volume) is  

     number density  =  NV  =  
nNA
V      (7.1) 

 
where N is the number of molecules and n the number of moles in the container of volume V.  The 
number of molecules within our volume of interest, Avx∆t, is therefore just the number density 
multiplied by this volume. i.e. 
 

     number of molecules  =  
nNA
V  Avx∆t    (7.2) 

 
Since the random velocities of the particles mean that on average half of the molecules in the 
container will be travelling towards the wall and half away from it, the number of molecules within 
our volume travelling towards the wall is half of the above value.  The total momentum imparted to 
the wall is now just the momentum change per collision multiplied by the total number of collisions. 
 

     ∆px   =  (2mvx)  ⎝
⎛

⎠
⎞1

2 nNA
V  Avx∆t    =   nMAvx

2∆t
V      (7.3) 

 
where we have used M = mNA. 
 
Pressure is defined as the force per unit area, so we need to convert the above momentum into a 
force in order to calculate the pressure.  We can do this using Newton’s second law of motion. 
 

     Fx  =  max  =  m
dvx
dt   =  

dpx
dt      (7.4) 

 
Applying this to Equation (6.3), we obtain 
  

     Fx  =  
dpx
dt   =  

∆px

∆t   =  
nMAvx

2

V       (7.5) 

  
The pressure is therefore 

     p = 
Fx
A   = 

nMvx
2

V       (7.6) 
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Finally, there is a small amount of ‘tidying up’ to carry out on this expression.  Since we have 
based our arguments on a particle with a single velocity vx, and in reality there is a distribution of 
velocities in the gas, we should replace vx

2 with <vx
2>, the average of this quantity over the 

distribution.  We can simplify things still further by recognising that the random motion of the 
particles means that the average speed along the x direction is the same as along y and z.  This 
allows us to define a root mean square speed 
 
    vrms = [<vx

2> + <vy
2> + <vz

2> ]1/2 = [3<vx
2>]1/2   (7.7) 

such that <vx
2> = 

1
3vrms

2  

 
Our final expression for the pressure is therefore 
 

    p = 
1
3 

nMvrms
2

V      or     pV = 
1
3 nMvrms

2    (7.8) 

 
Since the average speed of the molecules is constant at constant temperature, note that by our 
simple treatment of collisions with a surface, we have in fact just derived Boyle’s law. 
 
    pV = constant  (at constant temperature)   (7.9) 
 
From this point, it is fairly straightforward to go one step further and derive the ideal gas law.  
Recall that the equipartition theorem states that each translational degree of freedom possessed 
by a molecule is accompanied by a ½ kT contribution to its internal energy.  Each molecule in our 
sample has three translational degrees of freedom.  Also, because in the kinetic model, the only 
contribution to the internal energy of the system is the kinetic energy ½ mvrms

2 of the molecules, we 
therefore have: 

     
3
2 kBT = 

1
2 mvrms

2      (7.10) 

 
Multiplying both sides through by Avogadro’s number, NA, and rearranging slightly gives 
 

     RT = 
1
3 Mvrms

2       (7.11) 

 
Finally, substituting this result into equation (7.8) yields the ideal gas law. 
 
     pV = nRT      (7.12) 
 
Our simple kinetic model of gases can therefore explain all of the experimental observations 
described in Section 4.   
 
 
8.  The Maxwell Boltzmann distribution revisited 
 
In Section 3 we introduced the Maxwell Boltzmann distribution, describing the velocity distribution 
of gas molecules at thermal equilibrium.  There are various ways in which this distribution may be 
derived.  In the following version much of the hard work is done by means of fairly straightforward 
symmetry arguments. 
 
We will start by breaking the velocity v down into its components vx, vy and vz and considering the 
probability p(vx)dvx that a particle has a velocity component vx in a range dvx i.e. lies between vx 
and vx+dvx.  Since each velocity component may be treated independently, according to probability 
theory the total probability of finding a particle with components vx, vy, vz in the range dvx, dvy, dvz 
is just the product of the probabilities for each component. 
 
    P(vx,vy,vz) dvxdvydvz = p(vx)dvx p(vy)dvy p(vz)dvz    (8.1) 
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If we stop and think for a moment, we can reason that since the directions the particles are 
travelling in are completely random and that all directions within the gas are equivalent, the 
distribution function P(vx,vy,vz) can actually only depend on the total speed v of the particle rather 
than on the individual velocity components.  To express v in terms of the components we use the 
fact that v2 = vx

2 + vy
2 + vz

2.  The probability distribution function1 may now be written as 
P(vx

2+vy
2+vz

2), and we have 
 
    P(vx

2+vy
2+vz

2) dvxdvydvz = p(vx) p(vy) p(vz) dvxdvydvz  (8.2) 
 
and therefore   P(vx

2+vy
2+vz

2) = p(vx) p(vy) p(vz)    (8.3) 

 
 The only type of function that satisfies a relationship of this kind is an exponential (using the fact 
that ex+y+z = exeyez) so we can see immediately that the functions p(vx), p(vy), p(vz) on the right must 
in fact be exponential functions of vx

2, vy
2 and vz

2.  It is fairly easy to show that a suitable solution 
is: 
     p(vx) = A exp(-Bvx

2)     (8.4) 
 
with analagous expressions for p(vy) and p(vz).  The argument in the exponential is negative 
because energy constraints mean that for our model to make physical sense, the probability of 
finding a particle must decrease as we go to higher particle speeds.  Determining the two 
constants is fairly straightforward.  Since p(vx) is a probability distribution, it must be normalised to 
unity. i.e. 

    1  =  ⌡⌠-∞

∞
 p(vx)dvx  =  A ⌡⌠-∞

∞
 exp(-Bvx

2)dvx  =  A ⎝
⎛

⎠
⎞π

B
1/2

  (8.5) 

 
Therefore, A = (B/π)1/2.  We can now determine B by using our distribution to calculate a property 
that we already know.  From Equation (7.7 and 7.11), we have 
  

      <vx
2> = 

1
3vrms

2  = 
kBT
m       (8.6) 

 
We can also calculate <vx

2> using our probability distribution in Equation (8.14).  The average 
value of a property x that can take any value in a continuous range, and has a probability p(x) of 
taking a particular value, is given by <x> = ⌡⌠x p(x) dx.  We therefore have 

    

   <vx
2>  =  ⌡⌠-∞

∞
vx

2 p(vx) dvx  =  ⎝
⎛

⎠
⎞B

π

1/2

 ⌡⌠-∞

∞
vx

2 exp(-Bvx
2)dvx   (8.7) 

 

As in (8.5), this is a standard integral and has the value 
1
2⎝

⎛
⎠
⎞π

B3

1/2

 , giving <vx
2> = 

1
2B .  Therefore, 

from (8.6), we have B = m
2kBT , and our probability distribution function is 

   

     p(vx) = ⎝
⎛

⎠
⎞m

2πkBT

1/2

 exp(-mvx
2/2kBT)     (8.8) 

 
Our final step is to use this result to determine the distribution of molecular speeds (rather than just 
the distribution of a single velocity component).  From equation (8.1), this is simply 
 

   P(vx,vy,vz) dvxdvydvz  = ⎝
⎛

⎠
⎞m

2πkBT

3/2

 exp(-mv2/2kBT) dvxdvydvz    (8.9) 

                                                 
1 Note that P(vx

2+vy
2+vz

2) is the probability distribution function.  To obtain a probability of the particle having 
a particular set of velocity components, it must be multiplied by the volume element dvxdvydvz. 
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The above expression gives the probability of the speed distribution having components vx, vy, vz, 
whereas what we would really like to know is the probability P(v)dv that the molecular speed lies in 
the range v to v+dv. This is simply the sum of the probabilities that it lies in any of the volume 
elements dvxdvydvz within the spherical shell bounded by the two radii v and v+dv (i.e. a shell of 
radius v and thickness dv).  The appropriate volume element for the distribution is therefore the 
volume of this shell, which is 4πv2dv. We substitute this for the volume element dvxdvydvz in the 
above expression to give the final form for the Maxwell-Boltzmann distribution of molecular speeds. 
 

    P(v)dv = 4π ⎝
⎛

⎠
⎞m

2πkBT

3/2

 v2 exp(-mv2/2kBT) dv    (8.10) 

 
 
Mean speed, most probable speed and root-mean-square speed of the particles in a gas 
 
We can use the Maxwell Boltzmann distribution to determine the mean speed and the most 
probable speed of the particles in the gas.  Since the probability distribution is normalised, the 
mean speed is determined from the following integral: 
 
     <v> = ⌡⌠0

∞ v P(v)dv      (8.11)  

 
When we substitute for P(v) and carry out the integral, we obtain 
 

     <v> = ⎝
⎛

⎠
⎞8kBT

πm

1/2

  Mean speed   (8.12) 

 
With a little more work, this result may be generalised to give the mean relative speed between two 
particles of masses mA and mB. 
 

     <vrel> = ⎝
⎛

⎠
⎞8kBT

πµ

1/2

      Mean relative speed  (8.13) 

 
where µ = mAmB/(mA+mB) is the reduced mass of the particles. 
 
We can find the most probable speed by maximising the distribution in Equation (8.10) with respect 
to v (a good exercise if you fancy some practice at calculus), giving 
 

     vmp = ⎝
⎛

⎠
⎞2kBT

m
1/2

         Most probable speed  (8.14) 

 
Another characteristic speed that is often used is the root-mean-square speed, which we met 
earlier.  By rearranging Equation (8.6) we find that this is given by 
 

     vrms = ⎝
⎛

⎠
⎞3kBT

m
1/2

  RMS speed   (8.15) 

 
9.  Collisions 
 
Collisions are one of the most fundamental processes in chemistry, and provide the mechanism by 
which both chemical reactions and energy transfer occur in a gas.  The rate at which collisions 
occur determines the timescale of these events, and is therefore an important property for us to be 
able to calculate.  The rate of collisions is usually expressed as a collision frequency, defined as 
the number of collisions a molecule undergoes per unit time.  We will use kinetic theory to calculate 
collision frequencies for two cases: collisions with the container walls; and intermolecular collisions. 
 



 17

(i) Collisions with the container walls. 
 
We have done much of the work required to calculate the frequency of collisions with the container 
walls in Section 7.  There we showed that for a wall of area A, all molecules in a volume Avx∆t with 
positive velocities will collide with the wall in the time interval ∆t.  We can use our probability 
distribution p(vx) from Equation (8.8) to determine the average value <V> of this volume 
 

 <V>  =  A ∆t ⌡⌠0

∞vx p(vx) dvx  =  A ∆t ⎝
⎛

⎠
⎞m

2πkBT

1/2

 ⌡
⌠

0

∞
vx exp⎝

⎛
⎠
⎞-mvx

2

2kBT  dvx  =  A ∆t ⎝
⎛

⎠
⎞kBT

2πm

1/2

       (9.1) 

 

Multiplying the result by the number density of molecules, NV = p
kBT , yields the number of collisions 

occurring in the time interval ∆t.  For unit time and unit area (A = 1 m2, ∆t = 1 s), this yields a 
collision frequency 

     Zwall  =  p
kBT ⎝

⎛
⎠
⎞kBT

2πm

1/2

  =  p
(2πmkBT)1/2    (9.2a)  

 

Note that since ⎝
⎛

⎠
⎞kBT

2πm

1/2

 is equal to <v>/4, where <v> is the mean speed defined in Equation 

(8.12), this is also sometimes written, 

      Zwall = 
<v>N

4V       (9.2b) 

 
To give you an idea of the magnitude of this quantity, at 1 bar pressure and 298 K, N2 molecules 
undergo about 2.9 x 1027 collisions with a 1 m2 area of wall every second. 
 
(i) Collisions with other molecules.  
 
To determine the number of collisions a molecule undergoes with other molecules per unit time, we 
need to introduce the concept of the collision cross section, σ.  This is defined as the cross 
sectional area that the centres of two particles must lie within if they are to collide.  In the kinetic 
model, the particles act like hard spheres (there are no intermolecular forces) and a collision only 
occurs when the centres of two particles are separated by a distance equal to the particle 
diameter, d.  This is shown in the figure below.  Imagine that we have ‘frozen’ the motion of all of 
the particles apart from the darker coloured particle on the left.   We can see that this particle will 
only collide with particles whose centres are within the cross sectional area σ = πd2. 
 
We can work out the collision frequency by looking at the  figure in a little more detail.   In a time 
interval ∆t, the particle on the left will move a 
distance <v>∆t, represented by the length of 
the cylinder (<v> is the average velocity of 
the particle).  The number of collisions the 
particle undergoes in the time interval ∆t will 
therefore be equal to the number density of 
particles in the gas, N/V = p/kBT, multiplied 
by the volume σ<v>∆t of the ‘collision 
cylinder’ the particle has sampled.   We want to know the number of collisions per unit time, so we 
set ∆t = 1 s.  Also, since the particles are not really stationary, we need to replace <v>, the average 
speed of one molecule in the gas, by <vrel>, the mean relative velocity of the gas particles.  The 
collision frequency is therefore: 
 

     z  =  σ <vrel> NV   =   σ <vrel> p
kBT    (9.3) 

 
Note that the process of a single particle colliding with other particles in a gas is a first order rate 
process, and that the above expression is in fact simply a first order rate law of the form z = rate = 
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k[X].  In the gas phase it is more convenient to use number densities, NX/V, or pressures, in place 
of concentrations [X].  In this case our rate law takes the form rate = k’ (Nx/V), wihth k’ having a 
different value and units from k.  Comparing this with Equation (9.3), we can identify the ‘molecular 
scale’ rate constant as the volume of the collision cylinder per unit time, σ<vrel>. 
 
 The collision rate z that we have just calculated is the number of collisions made by a single 
molecule per second.  Usually what we would like to know is the total collision frequency (also 
called the collision density) i.e. the total number of collisions occurring in the gas per unit volume 
per unit time.  This is now a second-order rate process, with a rate equal to k’(Nx/V)2, or 
 

     ZXX = 
1
2 σ <vrel> ⎝

⎛
⎠
⎞NX

V
2

      (9.4) 

 
The factor of ½ in this expression ensures that we avoid double counting of each collision (i.e. the 
collision of particle X with particle X’ is counted as the same collision as that of X’ with X, not as a 
separate one).  Substituting for <vrel> from Equation (8.13) and using the fact that we can relate 
concentrations and number densities using [X]NA = N/V, we can rewrite Equation (9.4) as 
 

     ZXX  =  σ ⎝
⎛

⎠
⎞4kBT

πm

1/2

NA
2 [X]2     (9.5) 

     

Note that in the above we have used the fact that µ = 
mZmZ

mZ+mZ
 = 

mZ
2   for the reduced mass.  

Collision densities can be enormous.  As an example, for N2 gas under standard conditions, with a 
collision diameter of 0.28 nm, ZXX = 5 x 1034 s-1 m-3

. 

 
We can easily extend Equation (9.5) to cover collisions between different types of molecule, 
obtaining 
 

     ZXY  =  σ ⎝
⎛

⎠
⎞8kBT

πµ

1/2

NA
2 [X][Y]     (9.6) 

 
Note that in this case the collision cross section is still given by σ = πd2, but the collision diameter is 
now given by d=½(dX+dY), where dX and dY are the diameters of X and Y. 
 
Mean free path 
 
The average distance a molecule travels between collisions is called the mean free path, usually 
given the symbol λ. The time between collisions is just the inverse of the collision frequency i.e. 
1/z.  If the molecule is travelling at a mean speed <v>, then (since distance = velocity x time) the 
mean free path is  

      λ = 
<v>

z       (9.7) 

 
At standard pressure and temperature, the mean free path is generally of the order of a few tens of 
nanometres.  Since z is proportional to pressure, λ is inversely proportional to pressure e.g. 
doubling the pressure will halve the mean free path. 
 
Effusion and gas leaks 
 
A simple application of some of the concepts we have covered in this section on collisions is 
effusion, in which a gas at pressure p and temperature T escapes into a vacuum through a small 
hole of area a.  Effusion occurs when the diameter of the hole is smaller than the mean free path in 
the gas, so that no collisions occur as the molecules pass through the hole.  It is very simple to 
determine the rate of escape of the molecules, since this is just the rate at which they strike the 
hole. 
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     rate = 
dN
dt   =  Zwall a  =  pa

(2πmkBT)1/2    (9.8) 

 
The fact that the rate of effusion is proportional to 1/m1/2 was originally observed experimentally 
and is known as Graham’s law of effusion. 
 
As the gas leaks out of the container, the pressure decreases, so the rate of effusion will be time 
dependent.  The rate of change of pressure with time is 
 

     
dp
dt   =  

d(NkBT/V)
dt   =  kT

V  
dN
dt      (9.10) 

Substituting for 
dN
dt  and rearranging gives 

     
dp
p  = -⎝

⎛
⎠
⎞kBT

2πm

1/2

 aV dt      (9.11) 

which we can integrate to give 

     p = p0e-t / τ with τ = ⎝
⎛

⎠
⎞2πm

kBT
1/2

 Va    (9.12) 
 

Equation (9.12) has a number of uses.  In log form, we have lnp = lnp0 - t/τ.  Therefore, if we plot 
lnp inside our chamber against t, we can determine lnp0 and τ.  A measurement of τ provides a 
simple way of determining the molecular mass, m, as long as the temperature and volume are 
constant.  If we have a solid sample in our chamber, then the measurement of lnp0 yields the 
vapour pressure. 
 
Molecular beams 
 
State-of-the-art experiments in a number of areas of physical chemistry, including high resolution 
spectroscopy, reaction dynamics and surface science, employ molecular beams.  Using beams of 
molecules provides a sample with a well defined velocity distribution, and allows directional 
properties of chemical processes to be studied.  An example is a crossed molecular beam 
experiment, in which two molecular beams are crossed, usually at right angles, a chemical reaction 
occurs in the crossing region, and the speed and angular distribution of one or more of the 
products is measured.  The measured scattering distribution can then be analysed to gain insight 
into the forces and energetics involved in the transition state region, and provides a direct probe of 
the fundamental physics underlying chemical reactivity.  
 

           
 
 
There are two types of molecular beam sources, known as effusive and supersonic sources, 
respectively.  Both types of source work by allowing gas to escape from a ‘high pressure’ region 
through a small orifice into a vacuum.  The difference between the two sources is that in an 
effusive source the diameter of the hole is smaller than the mean free path in the gas, and in a 
supersonic source it is larger.  The orifice size is generally similar in the two types of source, but 
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the supersonic source operates at a much higher gas pressure, giving a much shorter mean free 
path than in the effusive source.  The two types of beam have very different properties. 
 
(i) Effusive sources 
In an effusive beam, since molecules effectively ‘wander’ out of the hole whenever they ‘collide’ 
with it, the Maxwell-Boltzmann distribution of the molecular speeds in the source is more or less 
maintained in the molecular beam.  The distribution is actually somewhat skewed towards higher 
velocities, since molecules with higher speeds undergo more collisions with the walls and are 
therefore more likely to exit the hole.  The velocity components are conserved in the molecular 
beam, with the result that the beam has a broad cos2θ angular distribution, where θ is the angle 
between the molecular velocity and the beam axis (i.e. the direction normal to the wall of the 
chamber containing the hole).  Effusive sources generally contain the gas at a low pressure, and 
are mainly only used to produce beams of metal atoms or other species that can only be prepared 
at low pressure in the gas phase.  Usually the source is heated to high temperatures in order to 
obtain as high a vapour pressure as possible.   
 
(ii) Supersonic sources 
In supersonic sources, because the mean free path is much smaller than the diameter of the hole, 
many collisions occur as the molecules exit the hole and in the region immediately beyond it.  
Collisions that impart a velocity component along the beam axis will be most successful at allowing 
a molecule to escape this region, with the result that the molecules that end up in the beam are 
those for which the collisions have converted almost all of their random translational energy and 
internal (rotational and vibrational) energy into directed translational kinetic energy along the beam 
axis.  The beam molecules therefore have almost no internal energy, occupying only very low 
rotational quantum states, and have a very narrow speed distribution.  The angular distribution 
about the beam axis is also much narrower than for an effusive beam.  Since the width of the 
molecular speed distribution determines the temperature of a gas, by this definition the molecules 
in a supersonic molecular beam are extremely cold.  It is fairly standard to reach temperatures as 
low as 5 K by this very simple technique of expanding a gas through a small hole.  The low 
temperatures in a molecular beam make them ideal for spectroscopic studies, since the small 
number of occupied quantum states often leads to a considerable simplification of the recorded 
spectrum relative to that of a room temperature sample. 
  
 
10.  Transport properties of gases 
 
As the name suggests, a transport property of a substance describes its ability to transport matter 
or energy (or some other property) from one location to another.  Examples include thermal 
conductivity (the transport of energy down a temperature gradient), electrical conductivity 
(transport of charge down a potential gradient), and diffusion (transport of matter down a 
concentration gradient).  Viscosity is another transport property, since it describes the rate at which 
linear momentum is transported through a fluid.  We can use kinetic theory to calculate several 
transport properties of gases.  First however, we need to introduce the idea of a flux. 
 
Flux 
 
When dealing with transport properties, we are generally interested in the rate at which matter, 
energy, charge, or some other property is transported.  We usually define this in terms of a flux, 
which is simply the amount of matter, energy, charge etc passing through a unit area per unit time. 
 For example, mass flux is measured in units of kg m-2 s-1, energy flux is measured in units of J m-2 
s-1, and so on.  As described above, transport of some property generally occurs in response to a 
gradient in a related property, and the flux is generally proportional to the gradient.  Note that both 
the flux and the gradient are vector properties.  For example, if there is a concentration gradient in 
some direction z, there will be a component of mass flux in the same direction. 
 

     Jz(matter) ∝ 
dn
dz       (10.1) 
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Here, n = N/V is the number density (don’t get it confused with the number of moles of gas, also 
often given the symbol n).  This proportionality of matter flux (more commonly known as diffusion) 
to the concentration gradient is often referred to as Fick’s first law of diffusion.  The constant of 
proportionality is called the diffusion coefficient, and is usually given the symbol D. 
 

     Jz(matter) = -D 
dn
dz      (10.2) 

 
Note that we have given D a negative sign because matter diffuses down a concentration gradient 
from higher to lower concentration. i.e. if dn/dz is negative (concentration decreasing in the positive 
z direction) then Jz will be positive (flow of matter in the positive z direction). 
 
Similarly, if there is a temperature gradient along z, there will be a component of energy flux along 
z, which will determine the rate of thermal diffusion (or thermal conductivity).  Again, since energy 
flows down a temperature gradient, the constant of proportionality, κ, takes a negative sign.  κ is 
known as the coefficient of thermal conductivity. 
 

     Jz(energy) = -κ 
dT
dz      (10.3) 

 
Viscosity is a slightly more subtle concept than diffusion or thermal conductivity.  Formally, 
viscosity describes a fluid’s resistance to deformation when subjected to a shear stress.  When a 
force is applied to an object or material, the material exerts an opposing force (by Newton’s third 
law).  Mechanical stress is a measure of the internal distribution of force per unit area within the 
material that balances the external force.  Normal stress is a stress state in which the stress is 
perpendicular to the face of the object, as would be the case when a compression force is applied 
normal to the surface.  In shear stress, the stress is parallel to a face of the material.   An example 
of shear stress would be the stress induced in a liquid trapped between two glass plates when the 
plates are moved across each other, as shown in the diagram below. 
             

  
    
When we try to pour a fluid, we induce a shear stress as ‘layers’ of fluid try to move over each 
other.  As stated above, viscosity is a measure of the deformation of the fluid under shear stress.  
Equivalently, we can think of viscosity as a measure of the internal friction within a fluid, and hence 
its internal resistance to flow.  The viscosity of a fluid is generally observed as how ‘thin’ or ‘thick’ 
the fluid is, or in other words, how easy it is to pour.  To give some examples, water has a fairly low 
viscosity and therefore flows easily, while treacle has a much higher viscosity and is much harder 
to pour. 
 
In the figure above, we can see that the shear stress results in different velocity components of the 
fluid in the x direction as we move through the depth of the fluid (in the z direction).  We therefore 
have a gradient in vx along the z direction, and in analogy to diffusion and thermal conductivity 
above, this gives rise to a flux in vx (or equivalently, in the momentum component px) along z. 
 

    Jz(momentum along x) = -η 
dvx
dz      (10.4) 

 
where η is the coefficient of viscosity (or more usually just ‘the viscosity’) of the fluid. 
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Now that we have defined the various transport phenomena, we will show how the kinetic theory of 
gases may be used to obtain values for the diffusion coefficient, D, the coefficient of thermal 
conductivity, k, and the coefficient of viscosity, η. 
 
Diffusion 
 
We can use kinetic theory both to show the molecular origins of Fick’s first law of diffusion (that the 
flux of diffusing molecules is proportional to the concentration gradient), and also to determine a 
value for the diffusion coefficient, D.  We will do this by considering the flux of molecules arriving 
from the left and from the right at an imaginary ‘window’ within a gas, as shown below.  Within our 
gas, there is a concentration gradient from right to left (i.e. the concentration decreases from left to 
right). 

     
  
Since the motion of the gas molecules is randomised on each collision, the furthest a given 
molecule is able to travel in a particular direction is on average equal to a distance of one mean 
free path, λ.  This means that to a first approximation we can assume that all of the particles 
arriving at the imaginary window over a time interval ∆t have arrived there from a distance λ to the 
left or right, and the number densities of particles arriving from the left and right will therefore 
reflect the number densities at z = -λ and z = +λ, respectively.  If we approximate our concentration 
gradient to be linear between these two points (the two outer dotted lines on the graph above) with 
a slope equal to that at z = 0, i.e. (dn/dz)0, then we can use the equation of a straight line to write 
these two number densities as 
 

    n(-λ) = n(0) - λ ⎝
⎛

⎠
⎞dn

dz 0
       and     n(+λ) = n(0) + λ ⎝

⎛
⎠
⎞dn

dz 0
  (10.5) 

 
From Equation (9.2b), which gives the number of collisions within a unit area per unit time, the 
fluxes from the left and right are therefore 
 

    JL  =  
<v> n(-λ)

4   =  
<v>
4  ⎝

⎛
⎠
⎞n(0) - λ ⎝

⎛
⎠
⎞dn

dz 0
     (10.6) 

 

    JR  =  
<v> n(+λ)

4   =  
<v>

4  ⎝
⎛

⎠
⎞n(0) + λ ⎝

⎛
⎠
⎞dn

dz 0
     (10.7) 

 
The net flux in the z direction is therefore 
  

     Jz = JL – JR = - 
1
2 ⎝

⎛
⎠
⎞dn

dz 0
 λ <v>     (10.8) 

 
We have therefore shown that the flux is proportional to the concentration gradient, and proved 
Fick’s first law.  Comparing Equation (10.8) with Equation (10.2), it would appear that the diffusion 
coefficient is given by D = ½ λ<v>.  In actual fact, the approximations we have made in reaching 
Equation (10.8) mean that this is not quite correct (within a distance λ from our window, some 
molecules are lost through collisions, an effect which needs to be corrected for), and a more 
rigorous treatment yields 
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      D = 
1
3 λ <v>      (10.9) 

 
We can use this result to predict the way in which the rate of diffusion will respond to changes in 
temperature and pressure.  Increasing the temperature will increase <v>, and therefore increase 
the diffusion rate, while increasing the pressure will reduce λ, leading to a reduction in the diffusion 
rate.      
  
Thermal conductivity 
 
We can derive equation (10.3), and obtain a value for the coefficient of thermal conductivity, κ, 
using a similar approach to that used above for diffusion.  We will again consider the flux of 
molecules upon an imaginary window from the left and right, but this time we will assume that the 
gas has a uniform number density (no concentration gradient), but instead has a temperature 
gradient, with the temperature decreasing from left to right.  We will assume that the average 
energy of a molecule is ε = αkBT, where α is the appropriate fraction given by the equipartition 
theorem (for example, a monatomic gas has α = 3/2 and ε = 3/2 kBT).  Using similar arguments to 
those above for diffusion, namely that molecules are on average reaching the window from a 
distance of one mean free path away, from regions in which their energies are ε(-λ) and ε(+λ), we 
obtain for the energy fluxes from left and right 

    JL  =  
1
4 <v> n ε(-λ)  =  

1
4 <v> n α kB ⎝

⎛
⎠
⎞T - λ ⎝

⎛
⎠
⎞dT

dz 0
   

    JR  =  
1
4 <v> n ε(+λ)  =  

1
4 <v> n α kB ⎝

⎛
⎠
⎞T + λ ⎝

⎛
⎠
⎞dT

dz 0
    (10.10) 

 
The net energy flux is therefore 

    Jz  =  JL - JR  =   -
1
2 αλ<v>kBn ⎝

⎛
⎠
⎞dT

dz 0
     (10.11) 

 
Again, this is not quite correct, and the true flux differs from this by a factor of 2/3 i.e. 
 

     Jz = -
1
3 αλ<v>kBn ⎝

⎛
⎠
⎞dT

dz 0
     (10.12) 

 
We have shown that the energy flux is proportional to the temperature gradient, and we can 
determine that the coefficient of thermal conductivity is given by 
 

     κ = 
1
3 αλ<v>kBn      (10.13) 

 
We can simplify this slightly by recognising that for an ideal gas, the heat capacity at constant 
volume is given by Cv = α kB NA.  Substituting this into the above yields 
 

     κ = 
1
3 λ<v>Cv[A]      (10.14) 

 
where [A] = n/NA = N/(NAV) is the molar concentration.  Note that because λ ∝ 1/p and [A] ∝ p, the 
thermal conductivity is independent of pressure2. 
 
 
 
 

                                                 
2 This is true at all but very low pressures. At extremely low pressures, the mean free path becomes larger 
than the dimensions of the container, and the container itself starts to influence the distance over which 
energy may be transferred. 
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Viscosity 
 
Carrying out a similar treatment to those above for diffusion and thermal conductivity, we assume 
that molecules incident on our imaginary window from the left carry momentum px(-λ) = mvx(-λ) 
and those from the right carry momentum mvx(+λ).  Our fluxes are now 
 

    JL  =  
1
4 <v>n mvx(-λ)  = 

1
4 <v>n ⎝

⎛
⎠
⎞mvx(0) - mλ ⎝

⎛
⎠
⎞dvx

dz 0
   

    JR  =  
1
4 <v>n mvx(+λ)  = 

1
4 <v>n ⎝

⎛
⎠
⎞mvx(0) + mλ ⎝

⎛
⎠
⎞dvx

dz 0
   (10.15) 

 
The net flux of momentum px along z is therefore 
 

     Jz  =  JL - JR  =  - 
1
2 nmλ<v>⎝

⎛
⎠
⎞dvx

dz 0
    (10.16) 

 
Again we need to correct this expression by a factor of 2/3 to give 
 

     Jz  =  - 
1
3 nmλ<v>⎝

⎛
⎠
⎞dvx

dz 0
     (10.17) 

 
The flux is proportional to the velocity gradient, as required, and we see that the coefficient of 
viscosity is given by 

     η  =  
1
3 nmλ<v>  =  

1
3 mλ<v>NA[A]     (10.18) 

 
As was the case for thermal conductivity, the viscosity is independent of the pressure.  However, it 
has a T1/2 dependence on temperature through the mean velocity <v>.  Note that this means that, 
unlike a liquid, the viscosity of a gas increases with temperature, since the increased velocity of the 
gas particles increases the momentum flux.  In the gas phase we are able to neglect intermolecular 
forces to a good approximation, but in a liquid these forces have a major effect.  The reason for the 
reduction in viscosity with increasing temperature in a liquid is that most of the energy goes into 
overcoming intermolecular forces, thereby making it easier for the molecules to move past each 
other. 
 
 


