Q1. a) i) The Boltzmann distribution at a temperature $T$ can be written in the following form:

$$\frac{n_i}{n_0} = \frac{g_i}{g_0} \exp(-\varepsilon_i/k_BT)$$

where $n_i$ and $n_0$ are the populations in state $i$ and the ground state respectively. Explain the meaning of the terms $g_i$, $g_0$ and $\varepsilon_i$.

ii) The molecular partition function $q$ is defined as

$$q = \sum_{i=0}^{\infty} g_i \exp(-\varepsilon_i/k_BT)$$

Show that the above equation for $n_i/n_0$ may be rewritten as

$$\frac{n_i}{N} = \frac{g_i \exp(-\varepsilon_i/k_BT)}{q}$$

where $N$ is the total number of molecules.

iii) The molecular partition functions for translation, rotation and vibration of CO at 298 K in a volume of 1 m$^3$ are 1.2x10$^{32}$, 109 and 1.00003 respectively. Comment on the relative magnitudes of these values, given that for CO the rotational constant $B = 1.9$ cm$^{-1}$, and the first vibrational level lies 2143 cm$^{-1}$ above the $v = 0$ ground state. [$k_BT/hc = 200$ cm$^{-1}$ at 298 K].

b) The partition function $q_{vib}$ for a harmonic oscillator is given by

$$q_{vib} = [1 - \exp(-hc\tilde{\nu}/k_BT)]^{-1}$$

where $\tilde{\nu}$ is the wavenumber of the vibration.

From the expression for the mean vibrational energy per molecule,

$$\frac{E_{vib}}{N_A} = k_BT^2 \frac{\partial \ln q_{vib}}{\partial T}$$

derive an expression for $E_{vib}/N_A$ and show that at high temperature ($hc\tilde{\nu} \ll k_BT$) the value tends to the classical limit of $k_BT$. [Note that $e^x = 1 + x + x^2/2! + ...$]

c) A two-level system, with both levels non-degenerate, is at equilibrium at a temperature $T$. Calculate the relative populations of the levels and the average energy per molecule, and show that the heat capacity of the system tends to zero at high temperature (when the separation of the levels is much less than $k_BT$).
Q2. Write down an expression for the molecular partition function \( q \) as a sum over energy levels, identifying clearly the quantities therein. Explain why \( q \) may be separated into a product of contributions from the various molecular modes of motion.

The rotational energy levels of a (heteronuclear) diatomic molecule are given by \( E_J = B \hbar c J(J+1) \), with \( B \) the rotational constant such that \( \theta = B \hbar c / k_B \) is the characteristic rotational temperature.

a) Explain why the fraction of molecules found in the rotational energy levels specified by the quantum number \( J \) is

\[
f(J) = \frac{2J+1}{q_{\text{rot}}} \exp\left(\frac{-\theta}{T} J(J+1)\right)
\]

where \( q_{\text{rot}} \) is the rotational partition function.

b) Write down the expression for \( q_{\text{rot}} \) and, by transforming the sum to a suitable integral, obtain \( q_{\text{rot}} \) in the high-temperature limit \( T \gg \theta \).

c) To a first approximation the intensity of a rotational absorption transition from \( J \rightarrow J' \) is determined by \( f(J) \). Explain briefly why this is so, and show that the line with maximum spectral intensity \( (J = J_{\text{max}}) \) corresponds to

\[
J_{\text{max}} = \sqrt{\frac{T}{2\theta}} \frac{1}{2}
\]

d) The Stokes branch of the pure rotational Raman spectrum of the (heteronuclear) molecule consists of approximately equally spaced lines separated by 9.8 cm\(^{-1}\). Identify which rotational transition has maximum intensity at a temperature \( T = 298 \text{ K} \). \( (k_B T / \hbar c = 207.2 \text{ cm}^{-1} \text{ at } T = 298 \text{ K}) \).

Q3. Statistical mechanics gives the following result for the equilibrium constant \( K (= K_p) \) of a gas phase reaction.

\[
K = \Pi \left( \frac{q_n}{N_a} \right)^{v_n} \exp(-\Delta E_0/RT)
\]

a) Explain carefully the meaning of the quantities appearing in this expression.

Consider the thermal ionization of an atomic species \( A \),

\[
A \rightleftharpoons A^+ + e^-
\]

with ionization energy \( I \). For both \( A \) and \( A^+ \), you need retain only the lowest energy electronic state \(^{2S+1}L\) arising from the appropriate ground electronic configuration; the difference in energy between the spin-orbit components \( (J) \) of these states may be neglected.

b) Show that the equation for this equilibrium (the Saha equation) may be expressed as
\[
K = \frac{2k_B T g_{A^+}}{P^\alpha \Lambda^2(T) g_A} \exp(-I/RT)
\]

where \( \Lambda(T) \) is the de Broglie wavelength of the electron, and \( g_{A^+} \) and \( g_A \) denote respectively the degeneracies of the \( A^+ \) and \( A \) electronic ground states.

[Note that for a particle of mass \( m \), the translational partition function is given by \( q_T = V/\Lambda^3(T) \), where \( \Lambda(T) = h/(2\pi mk_BT)^{1/2} \).]

c) Calculate \( K \) at \( T = 4000 \) K for the thermal ionization of carbon atoms. For carbon, \( I = 1086 \) kJ mol\(^{-1}\).

d) In assuming Boltzmann statistics, the above result for \( K \) effectively treats the electrons as classical particles. This is valid only if \( \Lambda(T) \ll (V/N_e)^{1/3} \), where \( N_e/V \) is the number density of electrons. For \( T = 4000 \) K and \( P/P^\alpha = 10^{-4} \), the fraction of ionized carbon atoms is \( 1.7 \times 10^{-4} \). Can the quantum mechanical nature of the electrons be neglected under these conditions? Explain your reasoning.