
Transition state theory 
   
1. The equilibrium constant 
 
Equilibrium constants can be calculated for any chemical system from the partition functions for the 
species involved.  In terms of the partition function q, the chemical potential of a species (essentially the 
molar Gibb’s free energy) is given by 

      = RT ln 
N
q 

 

Consider the reaction aA + bB  pP + qQ.  At equilibrium the free energy of the reactants is equal to the 

free energy of the products. 
                        Greact = Gprod 

                       a A + b B = p P + q Q 

  RT ln(NA/qA)a + RT ln(NB/qB)b = RT ln(NP/qP)p + RT ln(NQ/qQ)q 

   

Rearranging gives 
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We recognise this as the equilibrium constant formulated in terms of concentrations.  We are often 
interested in Kp, the equilibrium constant in terms of partial pressures.  For the case in which all species 
involved are gases, we can convert from Kn to Kp using the ideal gas equation, p = nRT/V. 
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where n = p + q a b is the change in the number of moles during reaction. If we use vibrational 
partition functions defined with energies measured from the zero-point energy for each reactant and 

product species, then we also need to include the extra factor eD0/kBT (see Statistical Mechanics tutorial) in 
order to ensure that all of the molecular partition functions are referenced to the same zero of energy.  The 
equilibrium constant then becomes 
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The quantity D0 = (pD0
P + qD0

Q aD0
A bD0

B) is the difference between reactant and product zero-point 

energies.  Usually, we can set D0 = H0, with H0 the enthalpy of reaction. 
 
 
2. The rate constant 
 
We can also use statistical mechanics to obtain rate constants from partition functions.  For a reaction  

A + B  AB‡ + P, we assume that the reactions involved in forming the activated complex AB‡ are much 

faster than the formation of products from the complex.  Kinetically, the reaction can then be treated as a 
pre-equilibrium (see first year Kinetics notes), with 
 

     K‡ = 
[AB‡]
[A][B]  



                      rate = k‡ [AB‡] = k‡K‡ [A][B] = kobs[A][B] 
 
where kobs=k‡K‡ is the observed rate constant, and k‡ is the rate constant for decomposition of the activated 
complex into products.  The equilibrium constant K‡ can be rewritten in terms of the appropriate partition 
functions, giving 
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where the partition functions are evaluated with respect to the zero-point levels of the reactants and 
transition state.  We can derive a complete expression for kobs by treating the motion of the activated 
complex over the top of the energy barrier (i.e. the reaction coordinate) as either a very loose vibration or 
as a translation. 
 
 
Derivation 1: Reaction coordinate as a vibration 
 

Reactants A and B have 3N6 vibrational degrees of freedom if non-linear, 3N5 if linear.  The same is true 

of the activated complex, which has 3(NA+NB)6 vibrational modes if it is non-linear.  One of these modes is 
of a different character from the rest, corresponding to a very loose vibration that allows the complex to 
dissociate into products.  For this degree of freedom we can use a vibrational partition function q* in which 

the vibrational frequency  tends to zero. i.e. 
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The rate constant is now given by 
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where qAB
‡ is now less one degree of freedom corresponding to the reaction coordinate.  The frequency  is 

the vibrational frequency of the activated complex in the degree of freedom corresponding to its 
decomposition.  It is therefore the frequency of decomposition i.e. the rate constant k‡.  This means that 
k‡q* = kBT/h, and the rate constant is given by 
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Derivation 2: Reaction coordinate as a translation 
 

Instead of using a vibrational partition function to describe the motion of 
the activated complex over the reaction barrier, we can also use a 
translational partition function.  We consider all complexes lying within a 

distance x of the barrier (see diagram) to be activated complexes.  The 

translational partition function for a particle of mass m in a box of length x 
is given by  
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giving a rate constant 
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where qAB

‡ is less one degree of freedom as before.  The average velocity of the particles moving from left 
to right over the barrier is given by kinetic theory as 
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The frequency with which the complexes pass over the barrier is the rate constant k‡, given by 
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When we substitute this equation into our expression for kobs, we obtain the same expression as in 
derivation 1. 
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This equation is sometimes known as the Eyring equation.  The main difficulty in applying transition state 
theory lies in determining qAB

‡.  However, modern methods and educated guesswork on the nature of the 
activated complex AB‡ usually allow rate constants for bimolecular reactions to be estimated to within a 
factor of two using this theory. 
 
 
3. Kinetic isotope effects 
 
There are two origins of the kinetic isotope effect.  The first, quantum mechanical tunnelling through the 
reaction potential energy barrier, is usually only important at very low temperatures and for reactions 
involving very light atoms.  For the simplest model case of a square barrier of width a, the probability of 
tunnelling through the barrier is approximately  
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The tunnelling probability therefore depends on the particle mass m, the particle energy E and the height 
V0 and width a of the barrier, but is independent of temperature.  At normal temperatures, tunnelling 
usually makes only a small contribution to the overall reaction rate.  However, since the rate of normal 
reaction falls off with temperature as fewer reactants have enough energy to surmount the activation 
barrier, at low temperatures the constant tunnelling contribution can make up a significant fraction of the 
overall reaction.  The mass dependence of the tunnelling probability means that tunnelling rates are 
significantly different for different isotopes, which can lead to large kinetic isotope effects in some cases. 
 
More usually, kinetic isotope effects are caused by differences in the activation energy for reactions 
involving different isotopes due to either the reactants, the transition state, or both, having different zero- 



point vibrational energies.  Vibrational frequencies, and therefore vibrational zero-point energies, depend 

on the force constant k and reduced mass  of the vibrating system. 
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The vibrational zero point energy ½ħe is inversely proportional to 1/2.  The effect on the activation barrier 
for a reaction involving an H/D atom is shown below. 
 

    
 
Since the transition state is (usually) more loosely bound than the reactants, the vibrational levels are more 
closely spaced.  The net effect is that the activation energy is higher, and therefore reaction slower, for the 
heavier isotopomer (a ‘normal’ isotope effect).  The maximum isotope effect is obtained when the bond 
involving the isotope is completely broken in the transition state, in which case the difference in activation 
energies is simply the difference in zero point energies of the reactants.  In some reactions it is the zero 
point energy difference between the transition states which governs the kinetic isotope effect.  In this case 
the activation energy is greater for the lighter isotope and an inverse isotope effect is observed, in which 
the heavier isotopomer undergoes faster reaction. 
 
To obtain a mathematical expression for the kinetic isotope effect we can use either the Arrhenius equation 
or the Eyring equation from transition state theory.  Using the Arrhenius equation, the rates for the two 
isotopomers are 

    kH = AH exp[EA(H)/kBT] 

    kD = AD exp[EA(D)/kBT] 
 
Assuming the pre-exponential factors are the same for both isotopes (this is usually a reasonable 
approximation, though if using transition state theory we can treat the problem properly and calculate the 
ratio using the partition functions for the two isotopic cases), the kinetic isotope effect, kH/kD, is therefore 
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or in the limiting case of the maximum kinetic isotope effect, 
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where E0(H) and E0(D) are the zero-point energies of the H- and D-containing reactants. 


