
 
 
 
Units and Dimensions in Physical Chemistry 
 
 
 
Units and dimensions tend to cause untold amounts of grief to many chemists throughout the 
course of their degree.  My hope is that by having a dedicated tutorial on them we can avoid this 
for Hertford chemists.  It is very important that you understand everything in this tutorial and that 
you (eventually) find the associated problems quite straightforward.  Please make sure you ask lots 
of questions if there are things you don’t understand (this goes for all tutorials, of course). 
 
 
 
SECTION A – Reading and notes 
 
 
Read the material taken from the book ‘Quantities, units and symbols in physical chemistry’ (often 
called the ‘Green Book’), and also the overview below.   Read them in any order you like, and take 
notes if it helps you. 
 
 
Physical quantitites 
 
A physical quantity is the product of a numerical value and a unit. 
 
   (Physical quantity) = (numerical value) x (unit) 
 
e.g.   (mass of an average person) = (70) x (kg)      Obviously, this is usually just written 70 kg. 
          (speed of light) = (2.99792458 x 108) x (ms−1) 
 
If you are one of the many people who, up until now, has always thought of units as something you 
have to tack onto the end of your calculations, appreciating the significance of the above is even 
more important.  In science, we are generally dealing with physical quantities, not with pure 
numbers (we’ll leave that to the mathematicians).  This means that virtually every number you write 
down should have units with it.  The numerical value of a physical quantity will vary depending on 
what units you choose to use (for example, an energy of 1 kJ could equally well be expressed as 
1000 J, or 6.242 x 1021 eV, or 2.294 x 1020 Hartree), which means that just writing down a number 
without also stating its units is completely meaningless.    Units are not optional! 
 
The good news is that by thinking of units in this way, all the calculations and conversions and 
conventions that you previously may have found tortuous and completely incomprehensible should 
suddenly become much more straightforward.  All calculations to do with units now essentially just 
become very basic algebra.  For example, the tick marks along the axis of a graph are generally 
only labelled with numerical values.  The axis label must therefore be consistent with this.   
Rearranging the above equation gives (numerical value) = (physical quantity)/(unit), so axes 
should always be labelled to be consistent with this e.g. speed / ms−1, or mass / kg.  The 
alternative, often seen in publications from the US and written e.g. speed (ms) or mass (kg) is 
technically incorrect and unfortunately shows that the authors do not understand physical 
quantities.   
 
Before we move onto calculations, we need a short recap of the SI (Système Internationale) 
system of units. 



SI units 
 
The SI system identifies base units.  These are defined very precisely (see the Green Book 
material for details) and are independent of one another. 
 
 
   Quantity  Unit  Symbol 
   −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
   Mass   kilogram kg 
   Length   metre  m 
   Time   second  s 
   Current  Ampere A 
   Temperature  Kelvin  K 
   Amount  mole  mol 
 
 
All other SI units can be expressed in terms of these base units.  You can work out the definitions 
very easily if you know a definition of the quantity you’re interested in. 
 
For example, the SI unit of energy is the Joule (J).  If we want to know how a Joule is defined in 
terms of the base units, we could use the definition of the kinetic energy of a moving object: 
 
  E = ½ mv2, where m and v are the mass and velocity of the object. 
 
You will be used to substituting numerical values into this type of equation, but really what you are 
doing is substituting in physical quantities.  The only reason you don’t usually substitute in the units 
with your numerical value is that the units part of the calculation is the same every time, so you 
already know the result (though you may not have realised this before!).   Consider the kinetic 
energy of a 10 kg object travelling at 2 ms−1. 
 
                         E = ½ (10 kg)(2 ms−1)2  = 40 kg m2 s−2  =  40 J  
 
We see that the units of J are equivalent to kg m2 s−2.  If we’re just interested in relationships 
between units, then we can just substitute the units into an equation (just as if we’re just interested 
in the numerical result then we only substitute the numerical values into an equation).  If we’re just 
doing a units calculation then we can ignore constant factors (e.g. the factor of ½ in the equation 
for the kinetic energy). 
 
As another example, consider the potential energy of an object in the gravitational field of the earth 
at a height h above the earth’s surface. 
 
   E = mgh, where g is the acceleration due to gravity, 9.8 ms−2. 
  
A units calculation would therefore give: 
 
   J = (kg) (ms−2) (m) = kg m2 s−2. 
 
Reassuringly, this is the same result as before.  Hopefully this convinces you that you can choose 
any equation you like to work out how to express an SI unit in terms of the base units. 
 
Often, you will see SI units with prefixes, which denote powers of ten.  You need to know these 
prefixes (at least up to powers of plus or minus 15). 
 
 



  10−1 deci d  101 deca da 
  10−2 centi c  102 hecto h 
  10−3 milli m  103 kilo k 
  10−6 micro μ  106 mega M 
  10−9 nano n  109 giga G 
  10−12 pico p  1012 tera T 
  10−15 femto f  1015 peta P 
  10−18 atto a  1018 exa E 
  10−21 zepto z  1021 zetta Z 
  10−24 yocto y  1024 yotta Y 
 
 
 
Calculations with physical quantities 
 
There are a few very simple rules regarding calculations with physical quantities. 
 
1.   You can only add or subtract quantities with the same units e.g. 10 kg + 5 kg = 15 kg, while 
 10 kg + 400 m is completely nonsensical.  Note: check that you have all energies in the 
 same units before carrying out this type of calculation e.g. all in J or all in kJ, not a mixture 
 of the two. 
 
2. When you multiply or divide, the units multiply and divide with the quantities, as shown in 
 the previous section. 
 
3. The arguments of logs, exponentials, and other functions that may be expanded as power 
 series may only be dimensionless numbers. 

  e.g.  ex = 1 + x + 
x2

2! + 
x3

3!  

 If x was not dimensionless, every term in the expansion would have different units! 
 
 This can be very useful in helping us work out the units of physical quantities.  For example, 
 a first order radioactive decay can be described by the equation n = n0e−kt, where n is the 
 amount of substance, n0 is the amount of substance at time zero, k is the rate constant for 
 the decay, and t is time.  If we didn’t know the units for the rate constant, we could use the 
 fact that the product kt must be dimensionless to work them out.  Since we know that time 
 has units of seconds, k must have units of s−1. 
 
 
Unit conversions 
 
This is an area in which many students frequently get themselves in a complete tangle or despair 
completely.  However, once you have the definition of a physical quantity clear in your head it is 
really very simple to convert between units. 
 
As an example, consider the volume V of a cube with sides of length L. 
 
     V = L3 
 
In SI units, L would be given in m, and V would therefore be in m3.  Assume we have sides of 
length 2 m.  This would give a volume of 8 m3. However, what if we wanted to know the volume in 
cm3?  Simple:  1 m = 100 cm, so: 
 
   V = (2 m)3 = (2 x 100 cm)3 = 8x106 cm3 



 
Consider a second example.  Suppose we want to convert 324 kJ mol−1 into J molecule−1.  We 
know that 1 kJ = 1000 J, and that 1 mol = 6.022 x 1023 molecules.  Therefore: 
 
 324 kJ mol−1 =  324 x (1000 J) x (6.022 x 1023 molecules)−1  =  5.38 x 10-19 J molecule−1  
 
 
Dimensional analysis 
 
Sometimes we can work out the form of an equation simply by knowing the units of the quantities 
involved.  There is often only one combination of the quantities that is consistent with their units.  
As a very simple example, suppose somebody tells you that the speed of an object has units of 
ms−1, and they know that you can work out the speed of an object from the distance it has travelled 
and the time it took to travel that distance.  However, they can’t remember the required equation.  
You can work it out by looking at the units: 
 
    Speed v has units of ms−1 
    Distance d has units of m 
    Time t has units of s 
 
The obvious combination of quantities with units of m and s to give a quantity with units of ms−1 is   
 
    v = d / t 
 
We could have done this calculation in a more formal way by equating powers of units i.e. 
 
    (speed) = (distance)a (time)b 
 
 So in terms of units (ms−1) = (m)a (s)b 
 
We immediately see that a = 1 and b = -1, so speed = (distance)1(time)−1, or v = d / t as before. 
  
We can also go back to our kinetic energy example.  Suppose you know that kinetic energy is 
measured in J (and that the equivalent in SI base units is kg m2 s−2, and you also know that the 
kinetic energy depends on the mass of the object and on its velocity, but you can’t remember the 
relationship. 
    (Energy)    =  (mass)a (velocity)b 
  
 So in terms of units (kg m2 s−2) =  (kg)a (ms−1)b  
  
It is very straightforward to see that a = 1 and b = 2.  If it had been less straightforward we could 
have matched terms on the left and right hand sides of the equation 
 
    kg   =  kga 
    m2  =  mb 
    s−2  =(s−1)b 

 

which again gives a = 1, b = 2.  Our dimensional analysis therefore tells us that 
 
    E ∝ mv2 

 

Dimensional analysis unfortunately can only give us the proportionalities between physical 
quantities.  In this case it cannot give us the required factor of ½. 
 



  
SECTION B – Problems 
 
 
1.   Identify the SI units for the following quantities, and use the accompanying expressions to 
 express them in terms of SI base units. 
 
 (a) Force  F = ma,  where F = force, m = mass, a = acceleration 
     
 (b) Pressure  p = F/A  where p = pressure, F = force, A = area 
 
  
2. How many dm3 are there in one m3? 
 
 
3. When a substance diffuses, the flux is defined as the rate at which the amount of substance 
 diffuses per unit area.  According to Fick’s law of diffusion, the flux is equal to minus the 
 diffusion coefficient, D, times the concentration gradient, dc/dx.   
 
 (a) What are the correct SI units for the flux and the concentration gradient?   
 
 (b) Hence deduce the SI units for the diffusion coefficient. 
 
 
4. The universal gas constant, R, can be calculated from measurements of pressure, volume, 
 temperature and amount of substance under ideal conditions from R = pV/nT. 
 
 (a) Find the SI units for R. 
 
 (b) 1 mol of gas occupies 24.8 m3 at 298 K and 1.00 mbar.  Calculate R. 
 
 (c) What is the concentration of the gas? (mol dm−3 and molecules cm−3). 
 
 
5. Consider the following statement: 
 
 “It is not permitted to take the log of a unit, so in the equation ΔGo = −RT ln K, the 
 equilibrium constant has no units.  The only equilibrium constants with no units are for 
 equilibria with equal numbers of particles on each side of the reaction equation, and so the 
 equation above is only meaningful for reactions of this type.” 
 
 Which of the following is the best statement of the flaw in this argument? 
 
 A Units are always ignored when logarithms are taken. 
 B The units of K depend on the relative numbers of reactants and products in the  
  chemical equation. 
 C In calculating K, it is necessary to use activities instead of concentrations, and  
  activities are dimensionless. 
 D There is no flaw in this argument. 
 
 
6. A molecule of carbon dioxide occupies a volume of 3.2 x 10−26 m3.  In the British system 
 the smallest unit of volume is the minim, which is equivalent to 0.05919385 cm3.  What is 
 the volume of the molecule in minims? 



 
 
7. The speed limit on a road in Rutland is 135000 furlongs per fortnight.  Given that a furlong 
 is 1/8 mile and a fortnight is 14 days, calculate the speed limit in miles per hour. 
 
 
8. The slug is an American unit of mass equivalent to 14.5939 kg, and 1 foot = 30.48 cm 
 (exactly).  The density of a soil sample is 3.01 g cm−3.  Convert this density to slugs per 
 cubic foot. 
 
 
9. A solution of sodium chloride has concentration 0.15 mol dm−3.  Convert this concentration 
 into molecules nm−3. 
 
 
10. (a) Express the SI units for density and pressure in terms of SI base units. 
 
 (b) Gas escapes through a small hole in the side of a vessel.  The rate of loss of mass  
  depends on the pressure of the gas, its density and the area of the hole. 
 
  (i) Use dimensional analysis to determine this dependence. 
 
  (ii) If the gas is ideal, how will the rate of loss depend on the molecular weight at 
   a given pressure and temperature? 
 
 
11. The speed of sound in a gas can be expressed in terms of its pressure and its density. 
 
 (a) Use dimensional analysis to determine this dependence. 
 
 (b) If the gas is ideal, how will the speed of sound depend on the molecular weight at a  
  given temperature? 
 
 (c) The speed of sound in air at room temperature is 330 ms−1.  Calculate the speed of  
  sound in gaseous helium at the same temperature. 
 
 
12. When an oil droplet is released, it falls under the influence of gravity until it reaches its 
 terminal velocity, at which the gravitational force exactly balances the frictional force 
 exerted by the air through which it passes.  The terminal velocity depends on the weight mg 
 of the drop (g is the acceleration due to gravity and m is the mass of the droplet), the 
 viscosity η of the medium, and the radius a of the droplet. 
 
 (a) Use dimensional analysis to work out how the terminal velocity should depend on all  
  of these factors. 
  [The SI units of viscosity are kg m−1 s−1.] 
 
 (b) What will be the effect of the following changes on the terminal velocity? 
 
  (i) Using a gas with twice the viscosity of air. 
 
  (ii) Using an oil drop with double the radius. 
 



13. The rotational energy of a diatomic molecule is a function of its bond length, r, its reduced 
 mass, μ, and Planck’s constant, h.  Use dimensional analysis to find out how the energy 
 depends on these quantities. 
 
 
14. The wind chill factor is the reduction in temperature due to the wind speed.  It arises from 
 the conversion of random motion (temperature) into organised motion (wind).  The wind 
 chill factor ΔT depends on the wind speed, v, the molecular mass of the gas, m, and 
 Boltzmann’s constant k, which has the value 1.38 x 10−23 J K−1.  Find the dimensions of 
 each of these quantities and use dimensional analysis to discover how ΔT depends on 
 them. 
 
 
15. The molecular collision frequency per unit concentration in a gas, Z, has units m3 s−1 and 
 depends on the Boltzmann constant, kB, the temperature, T, the molecular mass, m, and 
 the molecular diameter, d.  Use dimensional analysis to determine how Z depends on these 
 quantities. 
















































