Units and Dimensions in Physical Chemistry

Units and dimensions tend to cause untold amounts of grief to many chemists throughout the
course of their degree. My hope is that by having a dedicated tutorial on them we can avoid this
for Hertford chemists. It is very important that you understand everything in this tutorial and that
you (eventually) find the associated problems quite straightforward. Please make sure you ask lots
of questions if there are things you don’t understand (this goes for all tutorials, of course).

SECTION A — Reading and notes

Read the material taken from the book ‘Quantities, units and symbols in physical chemistry’ (often
called the ‘Green Book’), and also the overview below. Read them in any order you like, and take
notes if it helps you.

Physical quantitites
A physical quantity is the product of a numerical value and a unit.
(Physical quantity) = (numerical value) x (unit)

e.g. (mass of an average person) = (70) x (kg)  Obviously, this is usually just written 70 kg.
(speed of light) = (2.99792458 x 10%) x (ms™)

If you are one of the many people who, up until now, has always thought of units as something you
have to tack onto the end of your calculations, appreciating the significance of the above is even
more important. In science, we are generally dealing with physical quantities, not with pure
numbers (we’ll leave that to the mathematicians). This means that virtually every number you write
down should have units with it. The numerical value of a physical quantity will vary depending on
what units you choose to use (for example, an energy of 1 kJ could equally well be expressed as
1000 J, or 6.242 x 10* eV, or 2.294 x 10%° Hartree), which means that just writing down a number
without also stating its units is completely meaningless. Units are not optional!

The good news is that by thinking of units in this way, all the calculations and conversions and
conventions that you previously may have found tortuous and completely incomprehensible should
suddenly become much more straightforward. All calculations to do with units now essentially just
become very basic algebra. For example, the tick marks along the axis of a graph are generally
only labelled with numerical values. The axis label must therefore be consistent with this.
Rearranging the above equation gives (numerical value) = (physical quantity)/(unit), so axes
should always be labelled to be consistent with this e.g. speed / ms™, or mass / kg. The
alternative, often seen in publications from the US and written e.g. speed (ms) or mass (kg) is
technically incorrect and unfortunately shows that the authors do not understand physical
quantities.

Before we move onto calculations, we need a short recap of the Sl (Systeme Internationale)
system of units.



Sl units

The Sl system identifies base units. These are defined very precisely (see the Green Book
material for details) and are independent of one another.

Quantity Unit Symbol
Mass kilogram kg
Length metre m

Time second s
Current Ampere A
Temperature Kelvin K
Amount mole mol

All other Sl units can be expressed in terms of these base units. You can work out the definitions
very easily if you know a definition of the quantity you'’re interested in.

For example, the Sl unit of energy is the Joule (J). If we want to know how a Joule is defined in
terms of the base units, we could use the definition of the kinetic energy of a moving object:

E = % mv?, where m and v are the mass and velocity of the object.

You will be used to substituting numerical values into this type of equation, but really what you are
doing is substituting in physical quantities. The only reason you don’t usually substitute in the units
with your numerical value is that the units part of the calculation is the same every time, so you
already know the result (though you may not have realised this before!). Consider the kinetic
energy of a 10 kg object travelling at 2 ms™.

E=%(10kg)(2ms™)? =40kgm?s? = 40J
We see that the units of J are equivalent to kg m? s If we're just interested in relationships
between units, then we can just substitute the units into an equation (just as if we're just interested
in the numerical result then we only substitute the numerical values into an equation). If we're just
doing a units calculation then we can ignore constant factors (e.g. the factor of % in the equation
for the kinetic energy).

As another example, consider the potential energy of an object in the gravitational field of the earth
at a height h above the earth’s surface.

E = mgh, where g is the acceleration due to gravity, 9.8 ms™2.
A units calculation would therefore give:
J = (kg) (ms™?) (m) = kg m? s2.

Reassuringly, this is the same result as before. Hopefully this convinces you that you can choose
any equation you like to work out how to express an Sl unit in terms of the base units.

Often, you will see Sl units with prefixes, which denote powers of ten. You need to know these
prefixes (at least up to powers of plus or minus 15).



10" deci d 10" deca da
102 centi ¢ 10°  hecto h
102 mili m 10° kilo k
10°  micro p 10° mega M
10° nano n 10° giga G
102 pico p 102 tera T
10" femto f 10 peta P
10" atto a 10"® exa E
10# zepto z 102t zetta Z
10 vyocto y 10**  yotta Y

Calculations with physical quantities

There are a few very simple rules regarding calculations with physical quantities.

1.

You can only add or subtract quantities with the same units e.g. 10 kg + 5 kg = 15 kg, while
10 kg + 400 m is completely nonsensical. Note: check that you have all energies in the
same units before carrying out this type of calculation e.g. all in J or all in kJ, not a mixture
of the two.

When you multiply or divide, the units multiply and divide with the quantities, as shown in
the previous section.

The arguments of logs, exponentials, and other functions that may be expanded as power
series may only be dimensionless numbers.

2 X3

e.g. eX=1+x+%+§

If x was not dimensionless, every term in the expansion would have different units!

This can be very useful in helping us work out the units of physical quantities. For example,
a first order radioactive decay can be described by the equation n = nee™, where n is the
amount of substance, ng is the amount of substance at time zero, k is the rate constant for
the decay, and t is time. If we didn’'t know the units for the rate constant, we could use the
fact that the product kt must be dimensionless to work them out. Since we know that time
has units of seconds, k must have units of s™.

Unit conversions

This is an area in which many students frequently get themselves in a complete tangle or despair
completely. However, once you have the definition of a physical quantity clear in your head it is
really very simple to convert between units.

As an example, consider the volume V of a cube with sides of length L.

v=L_3

In Sl units, L would be given in m, and V would therefore be in m®. Assume we have sides of
length 2 m. This would give a volume of 8 m*. However, what if we wanted to know the volume in
cm®? Simple: 1 m =100 cm, So:

V = (2 m)® = (2 x 100 cm)® = 8x10° cm®



Consider a second example. Suppose we want to convert 324 kJ mol™ into J molecule™. We
know that 1 kJ = 1000 J, and that 1 mol = 6.022 x 10% molecules. Therefore:

324 kJ mol™ = 324 x (1000 J) x (6.022 x 10?® molecules)™ = 5.38 x 10™*° J molecule™

Dimensional analysis

Sometimes we can work out the form of an equation simply by knowing the units of the quantities
involved. There is often only one combination of the quantities that is consistent with their units.
As a very simple example, suppose somebody tells you that the speed of an object has units of
ms*, and they know that you can work out the speed of an object from the distance it has travelled
and the time it took to travel that distance. However, they can’t remember the required equation.
You can work it out by looking at the units:

Speed v has units of ms™
Distance d has units of m
Time t has units of s
The obvious combination of quantities with units of m and s to give a quantity with units of ms™is
v=d/t
We could have done this calculation in a more formal way by equating powers of units i.e.
(speed) = (distance)® (time)®
Soin terms of units  (ms™) = (m)? (s)°
We immediately see that a = 1 and b = -1, so speed = (distance)(time) ™, or v=d / t as before.
We can also go back to our kinetic energy example. Suppose you know that kinetic energy is
measured in J (and that the equivalent in Sl base units is kg m? s, and you also know that the
kinetic energy depends on the mass of the object and on its velocity, but you can’t remember the
relationship.
(Energy) = (mass)® (velocity)®

So in terms of units (kg m? s2) = (kg)® (ms™)°

It is very straightforward to see that a = 1 and b = 2. If it had been less straightforward we could
have matched terms on the left and right hand sides of the equation

kg = kg*
m? = m°
872 :(Sfl)b

which again gives a =1, b = 2. Our dimensional analysis therefore tells us that
E o« mv?

Dimensional analysis unfortunately can only give us the proportionalities between physical
guantities. In this case it cannot give us the required factor of %.



SECTION B — Problems

1. Identify the Sl units for the following quantities, and use the accompanying expressions to
express them in terms of Sl base units.

(a) Force F=ma, where F = force, m = mass, a = acceleration
(b) Pressure p=FA where p = pressure, F = force, A = area
2. How many dm? are there in one m*?
3. When a substance diffuses, the flux is defined as the rate at which the amount of substance

diffuses per unit area. According to Fick's law of diffusion, the flux is equal to minus the
diffusion coefficient, D, times the concentration gradient, dc/dx.

€) What are the correct Sl units for the flux and the concentration gradient?
(b) Hence deduce the Sl units for the diffusion coefficient.
4, The universal gas constant, R, can be calculated from measurements of pressure, volume,
temperature and amount of substance under ideal conditions from R = pV/nT.
(a) Find the Sl units for R.
(b) 1 mol of gas occupies 24.8 m* at 298 K and 1.00 mbar. Calculate R.

(© What is the concentration of the gas? (mol dm™ and molecules cm™).

5. Consider the following statement:

“It is not permitted to take the log of a unit, so in the equation AG® = —-RT In K, the
equilibrium constant has no units. The only equilibrium constants with no units are for
equilibria with equal numbers of particles on each side of the reaction equation, and so the
equation above is only meaningful for reactions of this type.”

Which of the following is the best statement of the flaw in this argument?

A Units are always ignored when logarithms are taken.

B The units of K depend on the relative numbers of reactants and products in the
chemical equation.

C In calculating K, it is necessary to use activities instead of concentrations, and
activities are dimensionless.

D There is no flaw in this argument.

6. A molecule of carbon dioxide occupies a volume of 3.2 x 102 m®. In the British system

the smallest unit of volume is the minim, which is equivalent to 0.05919385 cm®. What is
the volume of the molecule in minims?



10.

11.

12.

The speed limit on a road in Rutland is 135000 furlongs per fortnight. Given that a furlong
is 1/8 mile and a fortnight is 14 days, calculate the speed limit in miles per hour.

The slug is an American unit of mass equivalent to 14.5939 kg, and 1 foot = 30.48 cm
(exactly). The density of a soil sample is 3.01 g cm™. Convert this density to slugs per
cubic foot.

A solution of sodium chloride has concentration 0.15 mol dm™. Convert this concentration
into molecules nm™.
@) Express the Sl units for density and pressure in terms of Sl base units.

(b) Gas escapes through a small hole in the side of a vessel. The rate of loss of mass
depends on the pressure of the gas, its density and the area of the hole.

(@ Use dimensional analysis to determine this dependence.
(i) If the gas is ideal, how will the rate of loss depend on the molecular weight at
a given pressure and temperature?
The speed of sound in a gas can be expressed in terms of its pressure and its density.
€) Use dimensional analysis to determine this dependence.

(b) If the gas is ideal, how will the speed of sound depend on the molecular weight at a
given temperature?

(© The speed of sound in air at room temperature is 330 ms™*. Calculate the speed of
sound in gaseous helium at the same temperature.

When an oil droplet is released, it falls under the influence of gravity until it reaches its
terminal velocity, at which the gravitational force exactly balances the frictional force
exerted by the air through which it passes. The terminal velocity depends on the weight mg
of the drop (g is the acceleration due to gravity and m is the mass of the droplet), the
viscosity n of the medium, and the radius a of the droplet.

(a) Use dimensional analysis to work out how the terminal velocity should depend on all
of these factors.
[The Sl units of viscosity are kg m™* s™/]

(b) What will be the effect of the following changes on the terminal velocity?

0] Using a gas with twice the viscosity of air.

(i) Using an oil drop with double the radius.



13.

14.

15.

The rotational energy of a diatomic molecule is a function of its bond length, r, its reduced
mass, p, and Planck’s constant, h. Use dimensional analysis to find out how the energy
depends on these quantities.

The wind chill factor is the reduction in temperature due to the wind speed. It arises from
the conversion of random motion (temperature) into organised motion (wind). The wind
chill factor AT depends on the wind speed, v, the molecular mass of the gas, m, and
Boltzmann’s constant k, which has the value 1.38 x 102 J K*. Find the dimensions of
each of these quantities and use dimensional analysis to discover how AT depends on
them.

The molecular collision frequency per unit concentration in a gas, Z, has units m® s™ and
depends on the Boltzmann constant, kg, the temperature, T, the molecular mass, m, and
the molecular diameter, d. Use dimensional analysis to determine how Z depends on these
guantities.
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1
Physical quantities and units



1.1 PHYSICAL QUANTITIES AND QUANTITY CALCULUS

The value of a physical quantity can be expressed as the product of a numerical value and a unit:
physical quantity = numerical value x unit

Neither the name of the physical quantity, nor the symbol used to denote it, should imply
a particular choice of unit.

Physical quantities, numerical values, and units, may all be manipulated by the ordinary rules of
algebra. Thus we may write, for example, for the wavelength 1 of one of the yellow sodium lines:

A =5896x10"7 m = 589.6 nm )

where m is the symbol for the unit of length called the metre (see chapter 3), nm is the symbol for the
nanometre, and the units m and nm are related by

nm=10""m )

The equivalence of the two expressions for A in equation (1) follows at once when we treat the units
by the rules of algebra and recognize the identity of nm and 10~° m in equation (2). The wavelength
may equally well be expressed in the form

A/m = 5.896 x 10~ 7 3)
or
A/nm = 589.6 )

In tabulating the numerical values of physical quantities, or labelling the axes of graphs, it is
particularly convenient to use the quotient of a physical quantity and a unit in such a form that the
values to be tabulated are pure numbers, as in equations (3) and (4).

Examples T/K 103K/T p/MPa In(p/MPa)
216.55 46179 0.5180 —0.6578
273.15 3.6610 3.4853 1.2486
304.19 3.2874 7.3815 1.9990
24

In (p/MPa)

—0.8 | L ! |
3.2 3.6 4.0 4.4 4.8

103K/T

Algebraically equivalent forms may be used in place of 103K/T, such as kK/T or 10*(7/K)™'.

The method described here for handling physical quantities and their units is known as quantity
calculus. It is recommended for use throughout science and technology. The use of quantity calculus
does not imply any particular choice of units; indeed one of the advantages of quantity calculus is
that it makes changes between units particularly easy to follow. Further examples of the use of
quantity calculus are given in chapter 7, which is concerned with the problems of transforming from
one set of units to another.



1.2 BASE PHYSICAL QUANTITIES AND DERIVED PHYSICAL
QUANTITIES

By convention physical quantities are organized in a dimensional system built upon seven base
quantities, each of which is regarded as having its own dimension. These base quantities and the
symbols used to denote them are as follows:

Physical quantity Symbol for quantity

length

mass

time

electric current
thermodynamic temperature
amount of substance
luminous intensity

b~

v

All other physical quantities are called derived quantities and are regarded as having dimensions
derived algebraically from the seven base quantities by multiplication and division.

Example dimension of (energy) = dimension of (mass x length? x time ~2)

The physical quantity amount of substance or chemical amount is of special importance to
chemists. Amount of substance is proportional to the number of specified elementary entities of that
substance, the proportionality factor being the same for all substances; its reciprocal is the Avogadro
constant (see sections 2.10, p.46, and 3.2, p.70, and chapter 5). The SI unit of amount of substance is
the mole, defined in chapter 3 below. The physical quantity ‘amount of substance’ should no longer
be called ‘number of moles’, just as the physical quantity ‘mass’ should not be called ‘number of
kilograms’. The name ‘amount of substance’ and ‘chemical amount’ may often be usefully ab-
breviated to the single word ‘amount’, particularly in such phrases as ‘amount concentration’ (p.42)?,
and ‘amount of N,’ (see examples on p.46).

(1) The Clinical Chemistry Division of TUPAC recommends that ‘amount-of-substance concentration’ be
abbreviated ‘substance concentration’.



1.3 SYMBOLS FOR PHYSICAL QUANTITIES AND UNITS [5.a]

A clear distinction should be drawn between the names and symbols for physical quantities, and the
names and symbols for units. Names and symbols for many physical quantities are given in chapter
2; the symbols given there are recommendations. If other symbols are used they should be clearly
defined. Names and symbols for units are given in chapter 3; the symbols for units listed there are
mandatory.

General rules for symbols for physical quantities

The symbol for a physical quantity should generally be a single letter of the Latin or Greek alphabet
(see p.143)L. Capital and lower case letters may both be used. The letter should be printed in italic
(sloping) type. When no italic font is available the distinction may be made by underlining symbols
for physical quantities in accord with standard printers’ practice. When necessary the symbol may be
modified by subscripts and/or superscripts of specified meaning. Subscripts and superscripts that are
themselves symbols for physical quantities or numbers should be printed in italic type; other
subscripts and superscripts should be printed in roman (upright) type.

Examples C, for heat capacity at constant pressure
X for mole fraction of the ith species
but Cy  for heat capacity of substance B
E, for kinetic energy
e for relative permeability

A.H® for standard reaction enthalpy
V.  for molar volume

The meaning of symbols for physical quantities may be further qualified by the use of one or more
subscripts, or by information contained in round brackets.
Examples A¢S®(HgCl,, cr, 25°C) = —154.3 JK ™! mol !

Hi = (aG/ani)T,p,n,-gi
Vectors and matrices may be printed in bold face italic type, e.g. 4, a. Matrices and tensors are
sometimes printed in bold face sans-serif type, e.g. S,T. Vectors may alternatively be characterized
by an arrow, A, & and second rank tensors by a double arrow, S, ?‘

General rules for symbols for units

Symbols for units should be printed in roman (upright) type. They should remain unaltered in the
plural, and should not be followed by a full stop except at the end of a sentence.

Example r = 10 cm, not cm. or cms.

Symbols for units should be printed in lower case letters, unless they are derived from a personal
name when they should begin with a capital letter. (An exception is the symbol for the litre which
may be either L or 1, i.e. either capital or lower case.)

(1) An exception is made for certain dimensionless quantities used in the study of transport processes for which
the internationally agreed symbols consist of two letters (see section 2.15).

Example Reynolds number, Re

When such symbols appear as factors in a product, they should be separated from other symbols by a space,
multiplication sign, or brackets.



Examples m (metre), s (second), but J (joule), Hz (hertz)

Decimal multiples and submultiples of units may be indicated by the use of prefixes as defined in
section 3.6 below.

Examples nm (nanometre), kHz (kilohertz), Mg (megagram)



3
Definitions and symbols for units



3.1 THE INTERNATIONAL SYSTEM OF UNITS (SI)

The International System of units (SI) was adopted by the 11th General Conference on Weights and
Measures (CGPM) in 1960 [3]. It is a coherent system of units built from seven SI base units, one for
each of the seven dimensionally independent base quantities (see section 1.2): they are the metre,
kilogram, second, ampere, kelvin, mole, and candela, for the dimensions length, mass, time, electric
current, thermodynamic temperature, amount of substance, and luminous intensity, respectively.
The definitions of the SI base units are given in section 3.2. The SI derived units are expressed as
products of powers of the base units, analogous to the corresponding relations between physical
quantities but with numerical factors equal to unity [3].

In the International System there is only one SI unit for each physical quantity. This is either the
appropriate SI base unit itself (see table 3.3) or the appropriate SI derived unit (see tables 3.4 and 3.5).
However, any of the approved decimal prefixes, called SI prefixes, may be used to construct decimal
multiples or submultiples of SI units (see table 3.6).

It is recommended that only SI units be used in science and technology (with SI prefixes
where appropriate). Where there are special reasons for making an exception to this rule, it is
recommended always to define the units used in terms of SI units.
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3.2 DEFINITIONS OF THE SI BASE UNITS [3]

metre: The metre is the length of path travelled by light in vacuum during a time interval of
1/299 792 458 of a second (17th CGPM, 1983).

kilogram: The kilogram is the unit of mass; it is equal to the mass of the international prototype of
the kilogram (3rd CGPM, 1901).

second: The second is the duration of 9 192 631 770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the caesium-133 atom (13th
CGPM, 1967).

ampere: The ampere is that constant current which, if maintained in two straight parallel conductors
of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would
produce between these conductors a force equal to 2 x 10~ 7 newton per metre of length (9th CGPM,
1948).

kelvin: The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermo-
dynamic temperature of the triple point of water (13th CGPM, 1967).

mole: The mole is the amount of substance of a system which contains as many elementary entities as
there are atoms in 0.012 kilogram of carbon-12. When the mole is used, the elementary entities must
be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such
particles (14th CGPM, 1971).

Examples of the use of the mole

1 mol of H, contains about 6.022 x 10?3 H, molecules, or 12.044 x 10?3 H atoms
1 mol of HgCl has a mass of 236.04 g

1 mol of Hg,Cl, has a mass of 472.08 g

1 mol of Hg,%* has a mass of 401.18 g and a charge of 192.97 kC

1 mol of Fegy 9,S has a mass of 82.88 g

1 mol of e has a mass of 548.60 pg and a charge of —96.49 kC

1 mol of photons whose frequency is 5 x 10!* Hz has energy of about 199.5 kJ

See also section 2.10, p.46.

candela: The candela is the luminous intensity, in a given direction, of a source that emits
monochromatic radiation of frequency 540 x 10'2? hertz and that has a radiant intensity in that
direction of (1/683) watt per steradian (16th CGPM, 1979).
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3.3 NAMES AND SYMBOLS FOR THE SI BASE UNITS

The symbols listed here are internationally agreed and should not be changed in other languages or
scripts. See sections 1.3 and 1.4 on the printing of symbols for units. Recommended representations
for these symbols for use in systems with limited character sets can be found in [7].

Physical quantity

Name of SI unit

Symbol for SI unit

length

mass

time

electric current

thermodynamic
temperature

amount of substance

luminous intensity

metre
kilogram
second
ampere
kelvin

mole
candela

®> e =8

mol
cd
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3.4 SIDERIVED UNITS WITH SPECIAL NAMES AND SYMBOLS

Name of Symbol for  Expression in

Physical quantity SI unit SI unit terms of SI base units
frequency! hertz Hz s !
force newton N mkgs™?
pressure, stress pascal Pa Nm~? =m 'kgs 2
energy, work, heat joule J Nm =m?kgs 2
power, radiant flux watt w Js7! =m?kgs™?
electric charge coulomb C As
electric potential, volt A Jc! =m’kgs ?A7!

electromotive force
electric resistance ohm Q VA™! =m?kgs 3 A2
electric conductance siemens S Q! =m 2kg s’ A?
electric capacitance farad F cv! =m~2kg ls*A?
magnetic flux density tesla T Vsm™2 =kgs ?A"!
magnetic flux weber Wb Vs =m’kgs 2A"!
inductance henry H VA 's =m?kgs 2A?
Celsius temperature? degree Celsius °C K
luminous flux lumen Im cd sr
illuminance lux 1x cdsrm™2
activity? becquerel Bq s 1

(radioactive)
absorbed dose? gray Gy Jkg! =m?s?2

(of radiation)
dose equivalent® sievert Sv Jkg™! =m?s?

(dose equivalent index)
plane angle* radian rad 1 =mm !
solid angle* steradian ST | =mZm™?

(1) For radial (angular) frequency and for angular velocity the unit rad s~ !, or simply s~ !, should be used, and
this may not be simplified to Hz. The unit Hz should be used only for frequency in the sense of cycles per second.
(2) The Celsius temperature 6 is defined by the equation

0/°C = T/K — 273.15

The SI unit of Celsius temperature is the degree Celstus, °C, which is equal to the kelvin, K. °C should be treated
as a single symbol, with no space between the ° sign and the letter C. (The symbol °K, and the symbol °, should
no longer be used.)

(3) The units becquerel, gray and sievert are admitted for reasons of safeguarding human health [3].

(4) The units radian and steradian are described as ‘SI supplementary units’ [3]. However, in chemistry, as well
as in physics [4], they are usually treated as dimensionless derived units, and this was recognized by CIPM in
1980. Since they are then of dimension 1, this leaves open the possibility of including them or omitting them in
expressions of SI derived units. In practice this means that rad and sr may be used when appropriate and may
be omitted if clarity is not lost thereby.
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3.5 SI DERIVED UNITS FOR OTHER QUANTITIES

This table gives examples of other SI derived units; the list is merely illustrative.

Physical quantity

Expression in terms of SI base units

area

volume

speed, velocity

angular velocity

acceleration

moment of force

wavenumber

density, mass density

specific volume

amount concentration

molar volume

heat capacity, entropy

molar heat capacity,
molar entropy

specific heat capacity,
specific entropy

molar energy

specific energy

energy density

surface tension

1

heat flux density, irradiance

thermal conductivity
kinematic viscosity,
diffusion coefficient
dynamic viscosity
electric charge density
electric current density
conductivity
molar conductivity
permittivity
permeability
electric field strength
magnetic field strength
luminance
exposure (X and vy rays)
absorbed dose rate

mZ

m
ms™!
s™! rads”
ms~ 2
Nm

3

1

-3

kg m
m3 kg
molm~
m?3 mol ?
JK!
JK 'mol™!

-1
3

Nsm~2 = Pas

Cm™3
Am™?2
Sm™!
Sm?mol !
Fm™!
Hm™!
Vm~!
Am™!
cd m™?
Ckg™!
Gys™!

2

m?kgs™

m?kgs™2
=m?kgs™?2

K—l
K 'mol™!

— mZS—ZK—l

Il

m?s™2

m~'kgs”
=kgs 2
=kgs

-3

m?kgs~?mol !

2

=mkgs 3K™!

m~lkgs”
=m 3sA

— m—3 kg—l

1

s> A?

=kg 'mol 's3A?

— m—3 kg—l

s*A?

=mkgs ?A~?
=mkgs 3A"!

=kg lsA

—m2s”3

(1) The words ‘amount concentration’ are an abbreviation for ‘amount-of-substance concentration’. When

there is not likely to be any ambiguity this quantity may be called simply ‘concentration’.
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3.6 SI PREFIXES

To signify decimal multiples and submultiples of SI units the following prefixes may be used [3].

Submultiple Prefix Symbol Multiple Prefix Symbol
1071 deci d 10 deca da
1072 centi c 102 hecto h
10-3 milli m 103 kilo k
10-¢ micro m 108 mega M
10°° nano n 10° giga G
10712 pico p 1012 tera T
10713 femto f 103 peta P
10718 atto a 108 exa E
10°21 zepto z 102! zetta Z
1024 yocto y 1024 yotta Y

Prefix symbols should be printed in roman (upright) type with no space between the prefix and the
unit symbol.

Example kilometre, km

When a prefix is used with a unit symbol, the combination is taken as a new symbol that can be
raised to any power without the use of parentheses.

Examples 1cm?® = (0.01m)3 = 10" m3
Tps™! = (10765)~1 = 1065~
1V/cm = 100 V/m

1 mmol/dm® = 1 molm ™3

A prefix should never be used on its own, and prefixes are not to be combined into compound
prefixes.

Example pm, not pum

The names and symbols of decimal multiples and submultiples of the SI base unit of mass, the kg,
which already contains a prefix, are constructed by adding the appropriate prefix to the word gram
and symbol g.

Examples mg, not pkg; Mg, not kkg

The SI prefixes are not to be used with °C.
ISO has recommended standard representations of the prefix symbols for use with limited
character sets [7].
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3.7 UNITS IN USE TOGETHER WITH THE SI

These units are not part of the SI, but it is recognized that they will continue to be used in
appropriate contexts. SI prefixes may be attached to some of these units, such as millilitre, ml;
millibar, mbar; megaelectronvolt, MeV; kilotonne, kt. A more extensive list of non-SI units, with

conversion factors to the corresponding SI units, is given in chapter 7.

Physical Symbol

quantity Name of unit Sor unit Value in SI units
time minute min 60s

time hour h 3600s

time day d 86 400s

plane angle degree ° (m/180) rad

plane angle minute ! (/10 800) rad

plane angle second " (m/648 000) rad
length angstrom?! A 1071°m

area barn b 10728 m?

volume litre LL dm® =10"3m?
mass tonne t Mg =10%kg
pressure bar! bar 10° Pa=10° Nm™2
energy electronvolt? eV(=exV) ~ 1.60218 x 1071°J
mass unified atomic u(=m,(*2C)/12) =~ 1.66054 x 10~2" kg

mass unit?3

(1) The &ngstrém and the bar are approved by CIPM [3] for ‘temporary use with SI units’, until CIPM makes
a further recommendation. However, they should not be introduced where they are not used at present.

(2) The values of these units in terms of the corresponding SI units are not exact, since they depend on the
values of the physical constants e (for the electronvolt) and N, (for the unified atomic mass unit), which are
determined by experiment. See chapter 5.

(3) The unified atomic mass unit is also sometimes called the dalton, with symbol Da, although the name and
symbol have not been approved by CGPM.
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3.8 ATOMIC UNITS [9] (see also section 7.3, p.120)

For the purposes of quantum mechanical calculations of electronic wavefunctions, it is convenient to
regard certain fundamental constants (and combinations of such constants) as though they were
units. They are customarily called atomic units (abbreviated: au), and they may be regarded as
forming a coherent system of units for the calculation of electronic properties in theoretical
chemistry, although there is no authority from CGPM for treating them as units. They are discussed
further in relation to the electromagnetic units in chapter 7, p.120. The first five atomic units in the
table below have special names and symbols. Only four of these are independent; all others may be
derived by multiplication and division in the usual way, and the table includes a number of
examples.

The relation of atomic units to the corresponding SI units involves the values of the fundamental
physical constants, and is therefore not exact. The numerical values in the table are based on the
estimates of the fundamental constants given in chapter 5. The numerical results of calculations in
theoretical: chemistry are frequently quoted in atomic units, or as numerical values in the form
(physical quantity)/(atomic unit), so that the reader may make the conversion using the current best
estimates of the physical constants.

Physical Symbol

quantity Name of unit for unit Value of unit in SI

mass electron rest mass me 9.109 3897 (54) x 10~ 31 kg
charge elementary charge e 1.60217733(49) x 10~ ° C
action Planck constant/2n! h 1.05457266(63) x 10734 J s
length bohr! ag 529177249(24)x 10" ' m
energy hartree! E, 4.3597482(26)x 10718 J
time h/Ey, 24188843341 (29)x 107175
velocity? aoEy /h 2.18769142(10) x 106 ms ™!
force Ey/aq 8.2387295(25)x 1073 N
momentum, linear hja, 1.9928534(12) x 10" 2* N's
electric current eE,/h 6.6236211(20)x 1073 A
electric field Ey/eaq 5.1422082(15)x 10'' Vm~!
electric dipole moment edo 8.4783579(26) x 107 3°Cm
magnetic flux density hjeay? 2.35051808(71)x 10° T
magnetic dipole moment? eh/m, 1.85480308(62)x10~23JT!

(1) h = h/2m; ay = dneoh?/mee?; Ey = h2/m.a,?.

(2) The numerical value of the speed of light, when expressed in atomic units, is equal to the reciprocal of the
fine structure constant o; c/(au of velocity) = ch/aoE, = o~ ! &~ 137.0359895 (61).

(3) The atomic unit of magnetic dipole moment is twice the Bohr magneton, pg.

76



3.9 DIMENSIONLESS QUANTITIES

Values of dimensionless physical quantities, more properly called ‘quantities of dimension one’, are
often expressed in terms of mathematically exactly defined values denoted by special symbols or
abbreviations, such as % (percent) and ppm (part per million). These symbols are then treated as
units, and are used as such in calculations.

Fractions (relative values, yields, efficiencies)

Fractions such as relative uncertainty, mole fraction x (also called amount fraction, or number
fraction), mass fraction w, and volume fraction ¢ (see p.41 for all these quantities), are sometimes
expressed in terms of the symbols summarized in the table below.

Name Symbol Value Examples

percent Y% 10-2 The isotopic abundance of carbon-13 expressed as
a mole fraction is x = 1.1%

part per million ppm 10°¢ The relative uncertainty in the Planck constant

h (= 6.6260755(40) x 1034 J 5) is 0.60 ppm
The mass fraction of impurities in a sample of copper
was found to be less than 3 ppm, w < 3 ppm

These multiples of the unit one are not part of the SI and ISO recommends that these symbols
should never be used. They are also frequently used as units of ‘concentration’ without a clear
indication of the type of fraction implied (e.g. mole fraction, mass fraction or volume fraction). To
avoid ambiguity they should only be used in a context where the meaning of the quantity is carefully
defined. Even then, the use of an appropriate SI unit ratio may be preferred.

(i) The mass fraction w = 1.5x 107% = 1.5 ppm, or w = 1.5 mg/kg

(ii) The mole fraction x = 3.7x 1072 = 3.7% or x = 37 mmol/mol

(iii) Atomic absorption spectroscopy shows the aqueous solution to contain
a mass concentration of nickel p(Ni) = 2.6 mgdm ™3, which is approximately
equivalent to a mass fraction w(Ni) = 2.6 x 1076 = 2.6 ppm.

Further examples:

Note the importance of using the recommended name and symbol for the quantity in each of the
above examples. Statements such as ‘the concentration of nickel was 2.6 ppm’ are ambiguous and
should be avoided.

Example (iii) illustrates the approximate equivalence of (p/mg dm~?) and (w/ppm) in aqueous
solution, which follows from the fact that the mass density of a dilute aqueous solution is always
approximately 1.0 gcm ™ 3. Dilute solutions are often measured or calibrated to a known mass
concentration in mg dm ™3, and this unit is then to be preferred to using ppm to specify a mass
fraction.

Deprecated usage

Adding extra labels to ppm and similar symbols, such as ppmv (meaning ppm by volume) should be
avoided. Qualifying labels may be added to symbols for physical quantities, but never to units.
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7
Conversion of units

SI units are recommended for use throughout science and technology. However, some non-SI units
are in use, and in a few cases they are likely to remain so for many years. Moreover, the published
literature of science makes widespread use of non-SI units. It is thus often necessary to convert the
values of physical quantities between SI and other units. This chapter is concerned with facilitating
this process.

Section 7.1 gives examples illustrating the use of quantity calculus for converting the values of
physical quantities between different units. The table in section 7.2 lists a variety of non-SI units used
in chemistry, with the conversion factors to the corresponding SI units. Conversion factors for
energy and energy-related units (wavenumber, frequency, temperature and molar energy), and for
pressure units, are also presented in tables inside the back cover.

Many of the difficulties in converting units between different systems are associated either with
the electromagnetic units, or with atomic units and their relationship to the electromagnetic units. In
sections 7.3 and 7.4 the relations involving electromagnetic and atomic units are developed in
greater detail to provide a background for the conversion factors presented in the table in section 7.2.



7.1 THE USE OF QUANTITY CALCULUS

Quantity calculus is a system of algebra in which symbols are consistently used to represent physical
quantities rather, than their measures, i.e. numerical values in certain units. Thus we always take the
values of physical quantities to be the product of a numerical value and a unit (see section 1.1), and
we manipulate the symbols for physical quantities, numerical values, and units by the ordinary rules
of algebra.! This system is recommended for general use in science. Quantity calculus has particular
advantages in facilitating the problems of converting between different units and different systems of
units, as illustrated by the examples below. In all of these examples the numerical values are
approximate.

Example 1. The wavelength 2 of one of the yellow lines of sodium is given by
A=5896x10""m, or Ai/m=5896x10""

The angstrém is defined by the equation (see table 7.2, under length)
1A=A=10"m, or m/A =10°

Substituting in the first equation gives the value of 4 in 4ngstrém units
A/A = (A/m) (m/A) = (5.896 x 10~ 7) (10'°) = 5896

or

i=5896A

Example 2. The vapour pressure of water at 20°C is recorded to be
p(H,0, 20°C) = 17.5 Torr
The torr, the bar, and the atmosphere are given by the equations (see table 7.2, under pressure)

Torr =~ 133.3 Pa,
bar = 10° Pa,
atm = 101 325 Pa.

Thus

p(H,0,20°C) = 17.5 x 133.3 Pa = 2.33 kPa
= (2.33 x 10%/10°%) bar = 23.3 mbar
= (2.33 x 10%/101 325) atm = 2.30 x 102 atm

Example 3. Spectroscopic measurements show that for the methylene radical, CH,, the i !A;
excited state lies at a wavenumber 3156 cm ™! above the X 3B, ground state

#a—X) = To(3) — To(X) = 3156 cm ~*
The excitation energy from the ground triplet state to the excited singlet state is thus

AE = hc? = (6.626 x 10734 J5) (2.998 x 108 ms™ 1) (3156 cm™ 1)
=6269%x10722 Jmcm ™!
=6269%x1072°] =6.269 x 102 aJ

where the values of & and c are taken from the fundamental physical constants in chapter 5, and we

(1) A more appropriate name for ‘quantity calculus’ might be ‘algebra of quantities’, because it is the principles
of algebra rather than calculus that are involved.
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have used the relation m = 100 cm, or m cm~! = 100. Since the electronvolt is given by the equation
(table 7.2, under energy) eV ~ 1.6022 x 1071° J, or aJ ~ (1/0.16022) eV

AE = (6.269 x 1072/0.16022) eV = 0.3913 eV

Similarly the Hartree energy is given by (table 7.3) E, = h*/m.a,> ~ 4.3598 aJ, or aJ ~ (1/43598)E,,
and thus the excitation energy is given in atomic units by

AE = (6.269 x 1072/4.3598)E,, = 1.4380 x 10~ 2 E,,
Finally the molar excitation energy is given by

AE, = LAE
— (6022 x 102 mol 1) (6.269 x 102 aJ)
=37.75kJ mol~!

Also, since kcal = 4.184 kJ, or kJ = (1/4.184) kcal,
AE,, = (37.75/4.184) kcal mol ™! = 9.023 kcal mol !

Note that in this example the conversion factors are not pure numbers, but have dimensions, and
involve the fundamental physical constants h, c, e, m., a; and L. Also in this example the necessary
conversion factors could have been taken directly from the table on the inside back cover.

Example 4. The molar conductivity, 4, of an electrolyte is defined by the equation (see p.60)
A =klc

where « is the conductivity of the electrolyte solution minus the conductivity of the pure solvent
and c is the electrolyte concentration. Conductivities of electrolytes are usually expressed in
Scm™! and concentrations in mol dm~3; for example, x(KCl) = 7.39x 107°>Scm ™! for ¢(KCl)
= 0.000 500 mol dm ~ 3. The molar conductivity can then be calculated as follows

A = (7.39 x 10~ 5 S cm ™ )/(0.000 500 mol dm ~?)
=0.1478 Smol ™! cm ™! dm? = 147.8 Smol ! cm?

since dm? = 1000 cm3. The above relationship has previously often been, and sometimes still is,
written in the form

A = 1000x/c

However, in this form the symbols do not represent physical quantities, but the numerical values of
physical quantities in certain units. Specifically, the last equation is true only if 4 is the molar
conductivity in Smol~!cm? «x is the conductivity in Scm™!, and ¢ is the concentration in
mol dm 3. This form does not follow the rules of quantity calculus, and should be avoided. The
equation A = x/c, in which the symbols represent physical quantities, is true in any units. If it is
desired to write the relationship between numerical values it should be written in the form

_ 1000%/(Scm™!)

A/(S mol_l Cm2) = W

Example 5. A solution of 0.125 mol of solute B in 953 g of solvent S has a molality my given by>
my = ng/ms = (0.125/953) molg ! = 0.131 mol kg ™!

(2) Note the confusion of notation: my denotes molality, and mg denotes mass. However, these symbols are
almost always used. See footnote (16) p.42.
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The mole fraction of solute is approximately given by
xp = ng/(ns + ng) X ng/nsg = mgMs

where it is assumed that ng<ng.
If the solvent is water with molar mass 18.015 gmol ™!, then

xg ~ (0.131 molkg™1) (18.015 gmol ™~ ') = 2.36 g/kg = 0.00236

The equations used here are sometimes quoted in the form mg = 1000ng/ms, and xg = my M/1000.
However, this is not a correct use of quantity calculus because in this form the symbols denote the
numerical values of the physical quantities in particular units; specifically it is assumed that mg, mg
and Mg denote numerical values in mol kg™ ?, g, and g mol ~ ! respectively. A correct way of writing
the second equation would, for example, be

xp = (mg/mol kg 1) (Mg/g mol~1)/1000

Example 6. For paramagnetic materials the magnetic susceptibility may be measured experi-
mentally and used to give information on the molecular magnetic dipole moment, and hence on the
electronic structure of the molecules in the material. The paramagnetic contribution to the molar
magnetic susceptibility of a material, yy,, is related to the molecular magnetic dipole moment m by
the Curie relation

Am = XVm = ,uONAmZ/3kT

In terms of the irrational susceptibility x“", which is often used in connection with the older esu,
emu, and Gaussian unit systems (see section 7.3 below), this equation becomes

18 = 1% Vo = (to/4m) Nam?/3kT
Solving for m, and expressing the result in terms of the Bohr magneton ug,
m/up = (3k/ o Na) g * (m T)*?
Finally, using the values of the fundamental constants ug, k, yto, and N, given in chapter 5, we obtain

m/ iy = 0.7977[ ,,/(cm® mol ™)V [T/K 112
= 2.828[ 4" /(cm3 mol ~})]'/2 [T/K ]2,

These expressions are convenient for practical calculations. The final result has frequently been
expressed in the form

m/ug = 2.828 ((m T)"?

where it is assumed, contrary to the conventions of quantity calculus, that y,, and T denote the
numerical values of the molar susceptibility and the temperature in the units ¢cm® mol™! and
K respectively, and where it is also assumed (but rarely stated) that the susceptibility is defined using
the irrational electromagnetic equations (see section 7.3 below).
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THE GREEK ALPHABET

A, o A, o Alpha N, v N,v Nu

B, B B, Beta =& B & Xi

Iy I,y Gamma 0,0 0,0 Omicron
A, S 4,6 Delta I« IIn Pi

E, ¢ E, ¢ Epsilon P,p P,p Rho
Z Z,( Zeta 2, o 2,0 Sigma
H, n H,n Eta T,7 T, Tau
0,3,0 0,90 Theta Y, v Y, v Upsilon
I I, Iota D,0,d D, 0, ¢ Phi

K, » K,k Kappa X, x X, x Chi

A A A, A Lambda Y,y Y.y Psi

M, u M, u Mu Qo Q w Omega
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PRESSURE CONVERSION FACTORS

Pa kPa bar atm Torr psi
lPa = 1 1073 1073 9.86923x107% 7.50062x 1073 1.45038 x 104
1 kPa = 10° 1 1072 9.86923x 1073 17.50062 0.145038
1 bar = 10° 102 1 0.986 923 750.062 145.038
1 atm = 101325 101.325 1.01325 1 760 14.6959
1 Torr = 133322 0.133322 1.33322x107% 131579x1073% 1 193367 x 102
1 psi = 6894.76 6.89476 6.89476x 1072 6.80460x 1072 51.71507 1

Examples of the use of this table:

1 bar = 0.986 923 atm
1 Torr = 133.322 Pa

Note: 1 mmHg = 1 Torr, to better than 2 x 10”7 Torr (see p.112).
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