
The Variation Principle 
 
The variation theorem states that given a system with a Hamiltonian H, then if  is any normalised, 
well-behaved function that satisfies the boundary conditions of the Hamiltonian, then 
 

 <|H|>  Eo        (1) 

 

where E0 is the true value of the lowest energy eigenvalue of H.  This principle allows us to calculate an 
upper bound for the ground state energy by finding the trial wavefunction  for which the integral is 
minimised (hence the name; trial wavefunctions are varied until the optimum solution is found).  Let us 
first verify that the variational principle is indeed correct. 
 
We first define an integral   
 

 I = <|H-E0|> 
      = <|H|> - <|E0|> 
                   = <|H|> - E0 <|> 
                  = <|H|> - E0  (since  is normalised) 
 
If we can prove that I 0 then we have proved the variation theorem. 
 
Let i and Ei be the true eigenfunctions and eigenvalues of H, so H i = Ei i.  Since the eigenfunctions 
i form a complete basis set for the space spanned by H, we can expand any wavefunction  in terms of 
the i (so long as  satisfies the same boundary conditions as i). 
 
   =k akk 

 

Substituting this function into our integral I gives 
 
   I = k akk | H-E0 |j ajj  
     =   k akk | j (H-E0) ajj  
            
If we now use H = E, we obtain 
 
   I =  k akk | j aj (Ej-E0) j  
                   = kj ak*aj (Ej-E0)  k | j  
       = kj ak*aj (Ej-E0) jk 
 
We now perform the sum over j, losing all terms except the j=k term, to give 
 
   I = k ak*ak (Ek-E0) 
                   = kak|2 (Ek-E0) 
 
Since E0 is the lowest eigenvalue, Ek-E0 must be positive, as must |ak|2.  This means that all terms in 
the sum are non-negative and I  0 as required. 
 
For wavefunctions that are not normalised, the variational integral becomes: 
 



   
|H|
|   E0  

 
 
Linear variation method 
 
A special type of variation widely used in the study of molecules is the so-called linear variation 
function, a linear combination of n linearly independent functions f1, f2, ..., fn (often atomic orbitals) 
that satisfy the boundary conditions of the problem. i.e.  = i cifi.  The coefficients ci are parameters 
to be determined by minimising the variational integral.  In this case, we have: 
 
   |H| =  i cifi|H|j cjfj   

    = ij ci*cj fi|H|fj  
    = ij ci*cj Hij   where Hij is the Hamiltonian matrix element. 
 

  | =  i cifi|j cjfj   
           = ij ci*cj fi|fj  
           = ij ci*cj Sij   where Sij is the overlap matrix element. 

The variational energy is therefore 
 

  E = 
ij ci*cj Hij

 ij ci*cj Sij  

 
which rearranges to give 
 

  E ij ci*cj Sij = ij ci*cj Hij 
 

We want to minimise the energy with respect to the linear coeffients ci, requiring that 
E
ci

 = 0 for all i.  

Differentiating both sides of the above expression gives, 
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Since  ci*
ck

 = ik and  Sij = Sji, Hij=Hji, we have 

 
 

 
E
ck 

 ij ci*cj Sij + 2E i ciSik = 2 iciHik 

 

When Eck  = 0, this gives 
 

  ici(Hi k-ESik) = 0      for all k             SECULAR EQUATIONS 

 
We therefore have k simultaneous secular equations in k unknowns.  These equations can also be 
written in matrix notation, and for a non-trivial solution (i.e. ci 0 for all i), the determinant of the 
secular matrix must be equal to zero. i.e. 



 
  |Hik – ESik| = 0  
 

The resulting algebraic equation can be solved to obtain the energies E.  When arranged in order of 
increasing energy, these provide approximations to the energies of the first k states (each having an 
energy higher than the true energy of the state by virtue of the variation theorem).  To find the 
energies of a larger number of states we simply use a greater number of basis functions fi in the trial 
wavefunction .  To obtain the approximate wavefunction for a particular state, we substitute the 
appropriate energy into the secular equations and solve for the coefficients ci.   
NB:  Using this method it is possible to find all the coefficients c1 ... ck in terms of one coefficient; 
normalising the wavefunction provides the absolute values for the coefficients.   
 
 
Huckel Molecular Orbital Theory 
 
Huckel theory is a simplified version of the linear variation method which can be applied to conjugated 
 systems.  We assume  separability, which means that the nuclei, electrons of the atomic inner 
shells and localised  bonds provide an effective field in which the remaining  electrons move.  We 
then average the effective field. 
   
   H = i=1

n Heff(i)  

 
The next simplification is to approximate the  molecular orbitals as linear combinations of atomic 
orbitals.  In a minimal basis set calculation of a planar conjugated hydrocarbon, the only atomic 
orbitals with  symmetry are the 2p orbitals on carbon.  The  orbitals can therefore be written 
 
    i = i=1

n cijfj 

 

where fij is a 2p orbital on the jth carbon atom.  The optimum values for the n lowest p orbitals 
satisfy the secular equations 
 
   k=1

n (Hjk
eff- SjkEi)cij = 0 

 
in which the Ei’s are the roots of the secular determinant 

   |Hjk

eff- SjkEi| = 0 
 
The key assumptions in Huckel theory involve the integrals H and S.  We assume that Hii has the same 
value for every carbon atom in the molecule, and also for carbon atoms in different planar 
hydrocarbons.  The integral Hij is assumed to have the same value for any two carbons bonded to each 
other and to vanish for two non-bonded atoms.  The overlap integral Sij is assumed to be equal to zero 
unless i=j, in which case it will be equal to unity since the atomic orbitals fi are normalised.  This can be 
summarised as: 
 

 Hii = fi|Heff|fi    
 Hij = fi|Heff|fj       for atoms i, j bonded 
 Hij = fi|Heff|fj = 0    for atoms i, j not bonded 



 Sij = fi|fj = ij 

 and  are called the Coulomb and bond (sometimes resonance) integrals.  Since non-bonded carbon 
atoms are usually well separated, the third assumption of Huckel theory is reasonable, but assuming an 
overlap integral of zero for bonded atoms is a poor approximation (in practice, the theory is often 
modified to improve on this assumption).   
 
 
As an example, consider butadiene, H2C=CH-CH=CH2.  For the purposes of Huckel theory, only the 
connectivity of the carbon framework is important; no distinction is made between the cis- and trans- 
conformations.  The Huckel assumptions give: 

 
  H11 = H22 = H33 = H44 =  
         H12 = H23 = H34 =  
       H13 = H14 = H24 = 0 

 
The secular equations are: 
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Solving the secular determinant gives the four roots E1 = -1.618, E2 = -0.618, E3 = +0.618 and  
E4 = +1.618.  Substituting each of these energies into the secular equations in turn and solving for 
the coefficients gives the normalised molecular orbitals: 
 

  1 = 0.372f1 + 0.602f2 + 0.602f3 + 0.372f4 
  2 = 0.602f1 + 0.372f2 – 0.372f3 – 0.602f4 
        3 = 0.602f1 – 0.372f2 – 0.372f3 + 0.602f4 
  4 = 0.372f1 – 0.602f2 + 0.602f3 – 0.372f4 

 
The molecular orbital coefficients can be used to determine a range of molecular properties.  As an 
example, one quantity that is sometimes quoted in relation to Huckel theory is the  electron or charge 
density on an atom.  The charge density on atom j is given by qj = i ni|cij| 2.  While this is not a true 
electron density, measuring neither charge nor probability density, but merely the number of  
electrons in the vicinity of atom i, it can sometimes be used to give at least a rough indication of the 
reactivity of particular atoms with nucleophiles and electrophiles. 
 


